如何判斷函式可微,如何判斷一個函式可微

2021-03-03 20:27:37 字數 5462 閱讀 7028

1樓:

根據函式可微的必要條件和充分條件進行判定:

1、必要條件

若函式在某點可微分,

版則函式在該權點必連續;

若二元函式在某點可微分,則該函式在該點對x和y的偏導數必存在。

2、充分條件

若函式對x和y的偏導數在這點的某一鄰域內都存在,且均在這點連續,則該函式在這點可微。

相關知識:函式在某點的可微性

設函式y= f(x),若自變數在點x的改變數δx與函式相應的改變數δy有關係δy=a×δx+ο(δx),其中a與δx無關,則稱函式f(x)在點x可微,並稱aδx為函式f(x)在點x的微分,記作dy,即dy=a×δx,當x= x0時,則記作dy∣x=x0。

如何判斷一個函式是分佈函式

2樓:匿名使用者

1、趨於-∞時,等於0,趨於+∞時,等於1

2、遞增

3樓:

應用判斷是否是分佈函式

(1)設有函式,試說明f(x)能否是某個隨機變數的分佈函式。

注意到函式f(x)在 上下降,

不滿足性質(1),故f(x)不能是分佈函式.

(2)設柯西分佈函式

它在整個數軸上是連續、單調嚴格遞增的函式。且:

所以此函式滿足分佈函式的三條基本性質,故f(x)是隨機變數x的一個分佈函式。

4樓:烈破

無意中發現有道墳題2333,d選項瘋狂暗示,連續的分佈函式變化的區域圍成的面積應該是1,對應概率密度在0到1上的積分是1,這道題明顯的f(x)圍出的面積是個1/2,剩下的1/2明顯全在1點,但這是說不過去的,因為幾何概型在任意一個點上的概率都是0

5樓:匿名使用者

設x是一個隨機變數,x是任意實數,函式

f(x)=p

稱為x的分佈函式。

對於任意實數x1,x2(x1<x2),有

p=p-p=f(x2)-f(x1),

因此,若已知x的分佈函式,就可以知道x落在任一區間(x1,x2】上的概率,在這個意義上說,分佈函式完整地描述了隨機變數的統計規律性。

分佈函式是一個普遍的函式,正是通過它,我們將能用數學分析的方法來研究隨機變數。

如果將x看成是數軸上的隨機點的座標,那麼,分佈函式f(x)在x處的函式值就表示x落在區間(-∞,x】上的概率。

6樓:徐曉龍老婆

在定義域積分為1都可以作為分佈函式,但是這個只是必要條件

高等數學問題,怎麼判斷一個多元函式是否可微 5

7樓:超級大超越

dz是極小值,就是0了;δz是增量,按照式子代進去再減去0就是了。

8樓:脆骨腸剛反應

dz可以用公式求出

δz用減去f(0)求出

p等於根號下δx平方+δy平方

求解即可

9樓:匿名使用者

請問你的這種分塊的知識點在**找到的。

如何判斷一個函式在某個點的可導性?

10樓:幸運的

首先判斷函式在這個點x0是否有定義,即f(x0)是否存在;其次判斷f(x0)是否連續,即f(x0-), f(x0+), f(x0)三者是否相等;再次判斷函式在x0的左右導數是否存在且相等,即f『(x0-)=f'(x0+),只有以上都滿足了,則函式在x0處才可導。

函式可導的條件:

如果一個函式的定義域為全體實數,即函式在其上都有定義,那麼該函式是不是在定義域上處處可導呢?答案是否定的。函式在定義域中一點可導需要一定的條件:

函式在該點的左右兩側導數都存在且相等。這實際上是按照極限存在的一個充要條件(極限存在,它的左右極限存在且相等)推導而來。

可導的函式一定連續;不連續的函式一定不可導。

可導,即設y=f(x)是一個單變數函式, 如果y在x=x0處存在導數y′=f′(x),則稱y在x=x[0]處可導。

如果一個函式在x0處可導,那麼它一定在x0處是連續函式。

函式可導定義:(1)設f(x)在x0及其附近有定義,則當a趨向於0時,若 [f(x0+a)-f(x0)]/a的極限存在, 則稱f(x)在x0處可導。

(2)若對於區間(a,b)上任意一點(m,f(m))均可導,則稱f(x)在(a,b)上可導。

11樓:森燕百雨澤

判斷連續用定義法,函式f(x)在點x0是連續的,是指lim(x→x0)f(x)=f(x0)

函式在某個區間連續是指

任意x0屬於某個區間都有以上的式子成立。

還有一條重要結論:初等函式在其有意義的定義域內都是連續的。

從影象上看,可導函式是一條光滑曲線,即沒有出現尖點,如y=x絕對值在x=0處是尖點,故不可導。而且因為可導必連續,所以不連續點(間斷點)一定不可導。

從定義上,f'(x0)=lim△x→0

[f(x0+△x)-f(x0)]/△x

我們必須求出函式f(x)

在x=x0處可導的充分必要條件是x=x0處的左右導數都存在且相等,即f'(x0-0)=f'(x0+0)

如何判斷一個函式是否可微?

12樓:

令f(x,y)=

x三方乘以y/(x8次方+y平方) 當(x,y)不是原點;

0 當(x,y)是原點。

顯然這個函式各方向導數都存在,但因函式本身不連續,從而不可微。

我明白你什麼意思了 你是想說偏導數不連續但是函式可微啊 這個也簡單令f(x,y)=

(x^2+y^2)sin(1/(x^2+y^2)) 當(x,y)不是原點

0 當(x,y)是原點

這個函式在原點可微,但是偏導數不連續。

證明請用定義,很顯然。夾逼原理或者極座標都行。

如何判斷一個函式是否存在極限,是否連續,是否可導,是否可微?

13樓:匿名使用者

極限的概念是整個微積分的基礎,需要深刻地理解,由極限的概念才能引出連續、導數、積分等概念。極限的概念首先是從數列的極限引出的。對於任意小的正數e,如果存在自然數m,使所有n》m時,|a(n)-a|都小於e,則數列的極限為a。

極限不是相等,而是無限接近。而函式的極限是指在x0的一個臨域內(不包含x0這一點),如果對於任意小的正數e,都存在正數q,使所有(x0-q,x0+q)內的點,都滿足|f(x)-a|《e,則f(x)在x0點的極限為a。很多求極限的題目都可以用極限的定義直接求出。

例如f(x)=(x^2-3x+2)/(x-2), x=2不在函式定義域內,但對於任何x不等於2,f(x)=x-1,因此在x無限接近2,但不等於2時,f(x)無限接近1,因此f(x)在2處的極限為1。

連續的概念。如果函式在x0的極限存在,函式在x0有定義,而且極限值等於函式值,則稱f(x)在x0點連續。以上的三個條件缺一不可。

在上例中,f(x)在x=2時極限存在,但在x=2這一點沒有定義,所以函式在x=2不連續;

如果我們定義f(2)=1,補上「缺口」,則函式在x=2變成連續的;

如果我們定義f(2)=3,雖然函式在x=2時,極限值和函式值都存在,但不相等,那麼函式在x=2還是不連續。

由連續又引出了左極限、右極限和左連續、右連續的概念。函式值等於左極限為左連續,函式值等於右極限為右連續。如果函式在x0點左右極限都存在,且都等於函式值,則函式在x=x0時連續。

這個定義是解決分段函式連續問題的最重要的、幾乎是唯一的方法。

如果函式在某個區間內每一點都連續,在區間的左右端點分別左右連續(對閉區間而言),則稱函式在這個區間上連續。

導數的概念。導數是函式的變化率,直觀地看是指切線的斜率。略有不同的是,切線可以平行於y軸,此時斜率為無窮大,因此導數不存在,但切線存在。

導數的求法也是一個極限的求法。對於x=x0,在x0附近另找一點x1,求x0與x1連線的斜率。當x1無限靠近x0,但不與x0重合時,這兩點連線的斜率,就是f(x)在x=x0處的導數。

關於導數的題目多數可用導數的定義直接解決。教科書中給出了所有基本函式的導數公式,如果自己能用導數的定義都推導一遍,理解和記憶會更深刻。其中對數的導數公式推導中用到了重要極限:

limx-->0 (1+x)^(1/x)=e。

導數同樣分為左導數和右導數。導數存在的條件是:f(x)在x=x0連續,左右導數存在且相等。這個定義是解決分段函式可導問題的最重要的、幾乎是唯一的方法。

如果函式在某個區間內每一點都可導,在區間的左右端點分別左右導數存在(對閉區間而言),則稱函式在這個區間上可導。

複合函式的導數,例如f[u(x)],是集合a中的自變數x,產生微小變化dx,引起集合b中對應數u的微小變化du,u的變化又引起集合c中的對應數f(u)的變化,則複合函式的導函式f』[u(x)]=df(u)/dx=df(u)/du * du/dx=f』(u)*u『(x)

導數在生活中的例子最常見的是距離與時間的關係。物體在極其微小的時間內,移動了極其微小的距離,二者的比值就是物體在這一刻的速度。對於自由落體運動,下落距離s=1/2gt^2,則物體在時間t0的速度為v(t0)=[s(t0+a)-s(t0)]/a, 當a趨近於0時的值,等於gt0; 而速度隨時間的增加而增加,變化的比率g稱為加速度。

加速度是距離對時間的二階導數。

從直觀上看,可導意味著光滑的、沒有尖角,因為在尖角處左右導數不相等。有笑話說一位教授對學生抱怨道:「這飯館讓人怎麼吃飯?你看這碗口,處處不可導!」

積分的概念。從面積上理解,積分就是積少成多,把無限個面積趨近於0的線條,累積在一起,就成為大於0的面積。我們可以把一塊圖形分割為狹長的長方形(長方形的高度都取函式在左端或右端的函式值),分別計算各個長方形的面積再加總,可近似地得出圖形的面積。

當我們把長方形的寬度設定得越來越窄,計算結果就越來越精確,與圖形實際面積的差距越來越小。如果函式的積分存在,則長方形寬度趨近於0時,求出的長方形面積總和的極限存在,且等於圖形的實際面積。這裡又是一個極限的概念。

如果函式存在不連續的點,但在該點左右極限都存在,函式仍是可積的。只要間斷點的個數是有限的,則它們代表的線條面積總和為0,不影響計算結果。

在廣義積分中,允許函式在無限區間內積分,或某些點的函式值趨向無窮大,只要積分的極限存在,函式都是可積的。

嚴格地說,我們只會計算長方形的面積。從我們介紹的積分的求法看,我們實際上是把求面積化為了數列求和的問題,即求數列的前n項和s(n),在n趨近於無窮大時的極限。很多時候,求積分和求無限數列的和是可以相互轉換的。

當我們深刻地理解了積分的定義和熟練地掌握了積分公式之後,我們同樣可用它來解決相當棘手的數列求和問題。

例如:求lim na正無窮大時,1/n*[1+1/(1+1/n)+1/(1+2/n)+。。。+1/(1+(n-1)/n)+1/2]的值。

看似無從下手,可當我們把它轉化為一連串的小長方形的面積之後,不禁會恍然大悟:這不是f(x)=1/x在[1,2]上的積分嗎?從而輕鬆得出結果為ln2。

除了基本的積分公式外,換元法和分步法是常用的積分方法。換元積分法的實質是把原函式化為形式簡單的複合函式;分步積分法的要領是:在∫udv=uv-∫vdu中,函式u微分後應該變簡單(比如次數降低),而函式v積分後不會變得更復雜。

如何判斷函式是複合函式,如何判斷一個函式是複合函式

不是任何兩個函式都可以複合成一個複合函式,只有當mx du 時,二者才可以構成一個複合函式。設函式y f u 1 的定義域為du,值域為mu,函式u g x 的定義域為dx,值域為mx,如果mx du 那麼對於mx du內的任意一個x經過u 有唯一確定的y值與之對應,則變數x與y之間通過變數u形成的...

請問如何判斷函式的週期性,請問如何判斷一個函式的週期性

用定義f x t f x 是一種方法,但你必須首先找到一個週期t。如果能夠畫出函式的圖象,可以從函式的圖象中觀察得到。求最小正週期對一般函式比較困難,如果是三角函式可以直接用公式來求。方法有以下幾種 1 f x t f x 這種主要靠你去找,然後代入試驗是否合適內,合適就是 2 f x t f 1 ...

如何判斷函式是增函式還是減函式,如何判斷一個函式是增函式還是減函式

可以先畫出該函式的影象,在一個規定的區間內看y值是隨x的增大而減小還是隨x的增大而增大。減小則為減函式,反之則為增函式。怎樣判斷一個函式是增函式還是減函式 1 可以通過複合函bai數的性質來 du判斷。通則增,異則減zhi。2 通過經驗。例如,dao 加負號改變單調專性等。3 求導。屬導函式確實方便...