1樓:匿名使用者
被積函式的不定積分稱為被積函式的原函式,而原函式的導數就是這個被積函式。
2樓:匿名使用者
原函式的導數等於被積函式。
3樓:匿名使用者
求原函式的導數不就是普通函式求導麼?你這裡的原函式有啥特殊的?
4樓:王雪婷
導數有公式 對著公式寫咯
如何求一個導數的原函式?
5樓:很多很多
求一個導數的原函式使用積分,積分
是微分的逆運算,即知道了函式的導函式,反求原函式。
積分求法:
1、積分公式法。直接利用積分公式求出不定積分。
2、換元積分法。換元積分法可分為第一類換元法與第二類換元法。
(1)第一類換元法(即湊微分法)。通過湊微分,最後依託於某個積分公式。進而求得原不定積分。
(2)第二類換元法經常用於消去被積函式中的根式。當被積函式是次數很高的二項式的時候,為了避免繁瑣的式,有時也可以使用第二類換元法求解。
3、分部積分法。設函式和u,v具有連續導數,則d(uv)=udv+vdu。移項得到udv=d(uv)-vdu
兩邊積分,得分部積分公式∫udv=uv-∫vdu。
6樓:匿名使用者
已知導數求原函式就是求積分
象這樣的複合函式一般是用變數代換。
f(x)=∫√(4-x^2)dx
令x=2sint
則 dx=2costdt
f(t)=∫2cost*2costdt
=2∫2cos^tdt
=2∫(cos2t+1)dt
=sin2t+2t
然後通過 sint=x/2
解得cost=√(1-x^2/4)
得到sin2t=2sint*cost=x/2*√(4-x^2)再由 sint=x/2,得到 t=arcsin(x/2)所以f(x)=x/2*√(4-x^2)+arcsin(x/2)一般有根號大多通過三角代換來求積分
√(1+x^2) 時 x=1/tant
√(1-x^2)時 x=sint 或者 x=cost√(x^2-1)時 x=csct
靈活執行三角公式就行了。
7樓:匿名使用者
主要是用到變換,將根號裡面的經過適當的變換去掉根號,之後就用一些積分公式將其積分出來,最後換成原來變數!比如這個題,我們設x=2cost,這樣就可以去掉根號啦!dx=-2sintdt
之後你就只要求f'(t)=2sint*(-2sint)=-4(sint)^2,對於這個積分先將次,在求積分!試試吧!
求導數的原函式是有幾種常見方法
8樓:匿名使用者
1、公式
法例如∫x^ndx=x^(n+1)/(n+1)+c∫dx/x=lnx+c
∫cosxdx=sinx
等不定積分公式都應牢記,對於基本函式可直接求出原函式。
2、換元法
對於∫f[g(x)]dx可令t=g(x),得到x=w(t),計算∫f[g(x)]dx等價於計算∫f(t)w'(t)dt。
例如計算∫e^(-2x)dx時令t=-2x,則x=-1/2t,dx=-1/2dt,代入後得:-1/2∫e^tdt=-1/2e^t=-1/2e^(-2x)。對其求導驗算一下可知是正確的。
3、分步法
對於∫u'(x)v(x)dx的計算有公式:
∫u'vdx=uv-∫uv'dx(u,v為u(x),v(x)的簡寫)例如計算∫xlnxdx,易知x=(x^2/2)'則:
∫xlnxdx=x^2lnx/2-1/2∫xdx=x^2lnx/2-x^2/4=1/4(2x^2lnx-x^2)通過對1/4(2x^2lnx-x^2)求導即可得到xlnx。
4、綜合法
綜合法要求對換元與分步靈活運用,如計算∫e^(-x)xdx,這個就留著自己作為練習吧。
關於對基本函式求原函式可通過導數表直接得出,可以參考我的詞條。
9樓:匿名使用者
第一積分,第二積分,分部積分
已知一個函式的導函式,怎麼求原函式?
10樓:匿名使用者
你只要想什麼函式求導後會出現x的一次方的,是x²,但x²的導數是2x,所以前面乘以專1/2即可,也就屬是說,y=x的一個原函式可以是y=x²/2
再比如說y=sinx的原函式,你只要想什麼函式求導後會出現sinx,那肯定是cosx
但cosx的導數是是-sinx,那前面只需添一個負號,也就是說,y=sinx的一個原函式可以是y=-cosx
當然也可以記公式!
11樓:安靜的喊
額 這個方法太多了 這麼表訴能將明白的話 就沒高數老師了。
簡單的東西是通過積累練習的 直接看出來的
換而言之 給你一個x 讓你求原函式。 答案是 1|2 x^2 +c 經驗所致、、、
12樓:匿名使用者
自己總結,二樓的也列出了部分。我覺得最好的方法還是你先列出你所遇到回的或還記得的所有函式模答型,像y=sinx,y=x^2,y=x^3;相同的只列一個,相似的寫在一起,求出它們的導函式,要記住導函式的樣子哦,這樣下次遇到導函式,就知道原函式大致屬於什麼型別了。比如你說的,y=x^3的導函式為y=3x^2;
遇到導函式y=nx^2(n為任意非零數),就該知道它的原函式大概就為y=mx^3型別,y=mx^3的導函式為3mx^2,那就得出了3m=n,解出m,原函式就出來了。
13樓:匿名使用者
你這個應該叫做 不定積分
有不定積分表的, 可以看看
熟悉了以後就知道怎麼做了
14樓:匿名使用者
^熟記!反
dao推!回
1.y=c(c為常數) y'=0
2.y=x^答n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.
y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2
若函式的導數是2x,求原函式,若一個函式的導數是2x,求原函式。
這就是積分 導數的逆運算而已 只需要找出這個函式的原函式就可以了 但是別忘了後面還要加一個常數 設原函式是f x 則倒數來f x x 自2 積分,得f x x 2 ln2 c c是常數。微積bai分的兩大部du分是微分與積分。zhi一元函式情況下dao,求微分實際上是求一個已知函式的導函式,而求積分...
已知偏導數求原函式,全微分方程如何求原函式
v先對x積分 v x,y vdx 2xy x 2 y 2 2 dx y x 2 y 2 2 d x 2 y 2 y x 2 y 2 c y 其中 c y 為關於y的待定一元函式。v x,y 再對 版y求偏導數 並令權 dv dy x 2 y 2 2y 2 x 2 y 2 2 c y x 2 y 2 ...
如何求函式的n階導數,求一個函式的n階導數有沒有什麼好的方法
y 2sinxcosx sin2x y 2cos2x y 4sin2x y 4 8cos2x 一般地,y n 2 n 1 sin 2x n 1 兀 2 例如 y lnx x y 1 lnx x 2 1 x 2 lnx x 2 y 2 x 3 1 2lnx x 3 3 x 3 2lnx x 3 記y ...