1樓:匿名使用者
^^v先對x積分
v(x,y) = ∫vdx = ∫[(2xy)/(x^2+y^2)^2]dx = ∫[y/(x^2+y^2)^2]d(x^2+y^2) = -y/(x^2+y^2) + c(y),
其中 c(y)為關於y的待定一元函式。
v(x,y)再對
版y求偏導數 ,
並令權 dv/dy = (-(x^2+y^2)+2y^2)/(x^2+y^2)^2 +c'(y) = (x^2-y^2)/(x^2+y^2)^2 +c'(y) =u,
於是得到 c'(y)=0, 即 c(y)=c為常數。
取c=0,就得到前面給出的結果。
全微分方程如何求原函式 20
2樓:和與忍
這類微分方程都具有dz=p(x,y)dx+q(x,y)dy的形式,且滿足p關於y的偏導數等於q關於x的偏導數的特點。解答過程如下:
先由p關於y的偏導數等於q關於x的偏導數,得出dz=p(x,y)dx+q(x,y)dy是一個全微分方程的結論。接著得出通解是z=從(0,0)到(x,y)第二型曲線積分p(x,y)dx+q(x,y)dy。
接下來,根據該積分與積分路徑無關(因為p關於y的偏導數等於q關於x的偏導數),可以選擇從點(0,0)到點(x,y)的特殊路徑積分,而最常選取的是沿折線路徑積分,即先從(0,0)到(0,y)、再從(0,y)到(x,y)的折線或者是先從(0,0)到(x,0)、再從(x,0)到(x,y)的折線。最後z=積分結果 就是通解。
例如:閣下這個題,假如選擇(0,0)到(x,0)、再從(x,0)到(x,y)的折線積分,則通解是z=(0,0)到(x,0)積分p(x,y)dx+q(x,y)dy + (x,0)到(x,y)積分p(x,y)dx+q(x,y)dy。
在第一個積分裡,y(=0)是常數,所以dy=0,結果成為定積分(從0到x)(x^2 +2x*0-0^2)dx=1/3 * x^3 +c1.
在第二個積分裡,x一直沒變是常數,所以dx=0,結果成為定積分(從0到y)(x^2 -2xy -y^2)dy=x^2 * y -x*y^2-1/3 * y^3 +c2.
於是,通解是z=1/3 * x^3 +x^2 * y -x*y^2-1/3 * y^3 +c.
3樓:竹珺宜慶
目前最高難度的我只接觸到二階常係數非齊次線性方程。更難的需要工科兄弟們補充了,文科甚至理科已經無能為力。
首先是1階微分方程。這是最簡單的形式。
1階微分方程分為3種型別:
型別一:可分離變數的微分方程,它的形式如下:
dx/x=dy/y
總之是可以把x和y分開並且x與ds放到一邊,y與dy放到等號另一邊。
這種微分方程是可以直接積分求解的,
∫dx/x
=∫dy/y
=>ln|x|
=ln|y|
+lnc
c是任意常數。永遠要知道的是,微分方程有多少階,就有多少個任意常數。一階微分方程只有一個任意常數c。
型別二:齊次微分方程
這樣的微分方程的特點是(x^2+y^2)dx=(xy)dy括號內的項次數都相同。這個式子裡括號內的次數都是2次。它是可以轉化為第一種型別來求解的。
轉化的方法是設u=y/x,把原式的未知項都變成y/x的形式:(x/y
+y/x)=dy/dx,然後代入u=y/x(注意:y=ux,
因此dy/dx=xdu/dx
+u。這個也要代入),然後按照可分離變數型別的齊次方程求解。
型別三:一階線性方程
一階線性方程的特點是形式為y'+p(x)y=q(x),其中p(x)和q(x)都是x的函式。它主要是公式法求解。公式為y=[exp-∫p(x)dx]
二階微分方程就更復雜了,3種形式的通解,3種形式的特解,特解裡面還要考慮3種不同形式的未知項,所以在此不闡述。
4樓:陽浩曠諾禎
這裡涉及的知識比較多,主要思想是這樣的:
1.pdx+qdy如果恰好是某個二元函式的全微分的話,方程的通解就能求出了(此時該方程稱為全微分方程),比如,設
pdx+qdy=du(x,y)
那麼方程
pdx+qdy=0的通解便為:u(x,y)=c
2.但pdx+qdy不一定恰好是某個函式的全微分,判斷依據是:dp/dy=dq/dx,
即:此式成立(當然在某個區域內),存在u(x,y),如果此式不成立,則不存在u(x,y)
3.在不存在u(x,y)的情況下,可能可以通過乘以某個函式或式子,使得方程成為全微分方程,比如方程:xdy-ydx=0,通過判斷知道它不是全微分方程,但如果乘以1/x^2,方程變形為:
dy/x-(y/x^2)dx=0
通過驗證可知它是全微分方程,並且
dy/x-(y/x^2)dx=d(y/x)
4.象上例這樣,乘上的函式1/x^2便稱為是積分因子了,一般來說,如果微分方程通過乘以某個函式變成了全微分方程,則稱此函式稱為該方程的積分因子。
5.若pdx+qdy=du(x,y),則有du/dx=p,du/dy=q
因此dp/dy=d^2u/(dxdy)=d^2u/(dydx)=dq/dx
反之亦然,這就是判斷是否為全微分方程的依據。
5樓:小肥仔
計算過程如下:
dx/x=dy/y
總之是可以把x和y分開並且x與ds放到一邊,y與dy放到等號另一邊。
這種微分方程是可以直接積分求解的,
∫dx/x = ∫dy/y => ln|x| = ln|y| + lnc,
c是任意常數。永遠要知道的是,微分方程有多少階,就有多少個任意常數。一階微分方程只有一個任意常數c。
6樓:愛生活_愛聯盟
你這不是全微分方程,這是根據全微分求原函式啊!
高等數學中,全微分求原函式全微分方程如何求原函式
aq ax ap ay條件滿足了積分與路徑無關實際上求u x,y 的時候u x,y x0到x p x,y0 dx y0到y q x,y dy 是取了一條特殊的路徑,即先x方向的線段再y方向的線段 從 x0,y0 到 x,yo 再從 x,yo 到 x,y 所以對x積分時常量y用確切數字y0代,而對y積...
怎麼給人講清楚多元函式全微分與偏導數的關係
1 偏導數,partial differentiation,一般是指沿著 x 方向 或 y 方向 或 z 方向的導數 導數在美語中,喜歡用 derivative。2 無論是沿著 x y z 哪個方向的導數,計算導數的方法,跟一元函式 求導數的方法,完全一樣 對 x 方向求導時,將 y z 當成常數對...
求微分方程和傳遞函式,如何由傳遞函式寫出微分方程求步驟
傳遞函bai數uo s ui s r1lcs 2 l r1r2c s r2 r1lcs 2 l r1r2c s r1 r2 電路的傳遞du函式比較zhi好寫,不用寫微分方程dao也可以比專 較容易得出,如果一定要微屬分方程,可以先寫傳遞函式,再通過傳遞函式反推微分方程,結果如下 r1lc u0 t ...