1樓:匿名使用者
說得對,小孩子還是別弄這個。
2樓:釋義就是我
去心鄰域即在a的鄰域中去掉a的數的集合,應用於高等數學。在拓撲學中,設
專a是拓撲空間(x,τ)的一個子集,點屬x∈a。如果存在集合u,滿足 u 是開集,即 u∈τ;點x∈u;u 是a的子集,則稱點 x 是 a 的一個內點,並稱 a 是點 x 的一個鄰域。只考慮點a鄰近的點,不考慮點a,即考慮點集{x|a-δ
3樓:z荊襄高士
這是高數裡的東西,第一個就是解開那個帶絕對值的不等式就行了。小孩子別搞這種東西。
鄰域和去心鄰域分別是什麼?概念?怎麼理解?
4樓:俞根強
鄰域,是無限小概念會用到的,
可以無限地接近的一個範圍。
強調:可以無限小,範圍。
去心鄰域,是指鄰域內不包括某個點
5樓:薑絲有
1、鄰域,是無限小概念會用到的,可以無限地接近的一個範圍。是一個可以無限小,範圍。
2、去心鄰域,是指鄰域內不包括某個點。
3、舉例:0 的鄰域,是可以包括 0 的,但 0 的去心鄰域,是不包括 0 的
1、鄰域公理:給定集合x,對映u:x→p(p(x))(其中p(p(x))是x的冪集的冪集),u將x中的點x對映到x的子集族u(x)),稱u(x)是x的 鄰域系以及u(x)中的元素(即x的子集)為點x的 鄰域,當且僅當u滿足以下的 鄰域公理:
2、開鄰域和閉鄰域:若x的鄰域同時是x中的開集,稱其為x的 開鄰域;若它同時是x中的閉集則稱其為x的 閉鄰域。
去心鄰域什麼意思?
6樓:景田不是百歲山
去心鄰域即在a的鄰抄域中去掉a的數的襲集合,應用於高等數bai學。在拓du撲學中,zhi
設a是拓撲空間(x,τ)的一個子集,dao點x∈a。如果存在集合u,滿足 u 是開集,即 u∈τ;點x∈u;u 是a的子集,則稱點 x 是 a 的一個內點,並稱 a 是點 x 的一個鄰域。,即。
7樓:釋義就是我
去心鄰bai域即在a的鄰域中去掉dua的數的zhi集合,應用於高等數學。dao在拓撲內學中,設a是拓撲容空間(x,τ)的一個子集,點x∈a。如果存在集合u,滿足 u 是開集,即 u∈τ;點x∈u;u 是a的子集,則稱點 x 是 a 的一個內點,並稱 a 是點 x 的一個鄰域。
只考慮點a鄰近的點,不考慮點a,即考慮點集{x|a-δ
8樓:我不是他舅
點x0的鄰域,記作n(x0),是指包含點x0在內的任一開區間(a,b)。
就是說只要滿足a 9樓:匿名使用者 數學分析的定義 以a為中心的任何開區間稱為點a的鄰域,記作u(a)設回δ是任一正數,則在 答開區間(a-δ,a+δ)就是點a的一個鄰域,這個鄰域稱為點a的δ鄰域,記作u(a,δ),即u(a,δ)=。點a稱為這鄰域的中心,δ稱為這鄰域的半徑。 a的δ鄰域去掉中心a後,稱為點a的去心δ鄰域,有時把開區間(a-δ,a)稱為a的左δ鄰域,把開區間(a,a+δ)稱為a的右δ鄰域。 拓撲學的定義 設a是拓撲空間(x,τ)的一個子集,點x∈a。如果存在集合u,滿足1u是開集,即u∈τ,2點x∈u,3u是a的子集,則稱點x是a的一個內點,並稱a是點x的一個鄰域。若a是開(閉)集,則稱為開(閉)鄰域。 10樓:星雨漩渦 鄰域以a為中心的任何開copy區間稱bai為點a的鄰域,記作duu(a) 設δ是任一正數,則在開區間(a-δ,a+δ)zhi就是點daoa的一個鄰域,這個鄰域稱為點a的δ鄰域,記作u(a,δ),即u(a,δ)=。點a稱為這鄰域的中心,δ稱為這鄰域的半徑。 a的δ鄰域去掉中心a後,稱為點a的去心δ鄰域,有時把開區間(a-δ,a)稱為a的左δ鄰域,把開區間(a,a+δ)稱為a的右δ鄰域。 是不是一個點才有鄰域?去心鄰域是什麼意思? 11樓:何曼婷囖 回答如下:的確是有一 個點才有鄰域的,而且這個點不僅僅侷限於座標軸,還可以是二維、三維空間裡的一個點。 以點a為中心的任何開區間稱為點a的鄰域,而這個開區間裡面去掉a這個點就是去心鄰域了。 座標軸:用來定義一個座標系的一組直線或一組曲線;位於座標軸上的點的位置由一個座標值所唯一確定,而其他的座標軸上的點的位置由一個座標值所唯一確定,而其他的座標在此軸上的值是零。 平面解析幾何中用作參考線的兩條相交直線。 有一公共點的三條直線,為三維解析幾何中三個參考座標平面的交線。 12樓:首聽楓都用 是有一個點才有鄰域的,去心鄰域可以這樣理解比如一條數軸上面有三個點0,1,2 ;a=1,a的一個去心鄰域就是開區間(0,2)但是1要從這個區間中去掉 相當於(0,1)∪(1,2)的意思。 再拓展一下,圓心在座標系的原點 1為半徑 那麼除了圓心這個點 其他都是它的鄰域 明白?再看看別人怎麼說的。 13樓:司寇博智流 當然是點才有鄰域的。而且這個點不僅僅侷限於座標軸,還可以是二維、三維空間裡的一個點。當然這是後話,你現在可能還沒學到。 以點a為中心的任何開區間稱為點a的鄰域。而這個開區間裡面去掉a這個點就是去心鄰域了。 去心鄰域0<|x-a|<δ指的就是離點a的距離在0和δ之間的點集(距離不等於0就意味著不包含a點,即是去心鄰域了)。 剛開始學高數確實有很多東西挺抽象的,要自己慢慢去琢磨。暫時摸不透的可以留到學了以後的知識之後再看看,就會豁然開朗了。 祝你學業有成...... 鄰域和去心鄰域分別是什麼,怎麼理解? 14樓:齊天大聖 鄰域指的是是無限小概念當會用到的, 即可以無限地接近的一個範圍。強調的內容是可以無限小,範圍。 去心鄰域指的是鄰域內不包括某一個點 。 舉個例來說,求0 的鄰域是可以包括 0在內 的。 但是求 0 的去心鄰域是,是不包括 0 的在內的。 拓展資料: 初等定義例子 領域去心鄰域 點 a的 δ鄰域去掉中心 a後,稱為點 a的 去心δ鄰域,表達方法是在u上標一個小的0。有時把 開區間( a - δ, a)稱為a的 左δ鄰域,把開區間( a, a + δ)稱為a的 右δ鄰域。 15樓:薑絲有 1、鄰域,是無限小概念會用到的,可以無限地接近的一個範圍。是一個可以無限小,範圍。 2、去心鄰域,是指鄰域內不包括某個點。 3、舉例:0 的鄰域,是可以包括 0 的,但 0 的去心鄰域,是不包括 0 的 1、鄰域公理:給定集合x,對映u:x→p(p(x))(其中p(p(x))是x的冪集的冪集),u將x中的點x對映到x的子集族u(x)),稱u(x)是x的 鄰域系以及u(x)中的元素(即x的子集)為點x的 鄰域,當且僅當u滿足以下的 鄰域公理: 2、開鄰域和閉鄰域:若x的鄰域同時是x中的開集,稱其為x的 開鄰域;若它同時是x中的閉集則稱其為x的 閉鄰域。 16樓:匿名使用者 其實鄰域和去心鄰域差不多的,這個應該是高數上冊的題目,區別就是去心的少了一個點。 根據導函式的概念,在該點容也可導。鄰域內可導包含去心鄰域內可導以及某點可導後兩個沒有直接關係。洛必達法則是去心鄰域可導才能用,是麼。鄰域內可導一定能用 只是極限的情況比較複雜,很多情況某點不一定分子分母有意義,所以不連續,就不可導了,此時,要求鄰域內可導,要求太高,去心鄰域內可導,則降低了要求,使定... 首先我還是說一下為什麼要規定領域的概念 這只是為了把點變成線。內數學是講究維數的,所容以思維不能限定於已有的概念。然後極限,去心其實就是說在 心 這個位置到底是多少不知道,比如自變數為 a 0,a 0 意思是在a這個點到底對應的函式值是多少其實不知道,只是無限接近於某個值,無限接近不就是極限嗎?而連... 去心鄰域主要求極限的時候用,而求極限當然是取不到那個點的,所以要嚴格的說在去心鄰域內 為什麼函式極限要在去心鄰域內有定義 因為函式在某點有極限,並不要求函式在該點有定義。在運用以上兩條去求函式的極限時尤需注意以下關鍵之點 一是先要用單調有界定理證明收斂,然後再求極限值。二是應用夾擠定理的關鍵是找到極...求問若函式在某點鄰域內可導,則在其去心鄰域內也可導麼
為什麼極限是去心鄰域,而連續不需要去心
去心鄰域這個要求有啥意義,為啥好多定義都是在去心鄰域呢,鄰域不可以嗎