1樓:是你找到了我
二階常係數非齊次線性微分方程的表示式為y''+py'+qy=f(x),特解
1、當p^2-4q大於等於0時,r和k都是實數,y*=y1是方程的特解。
2、當p^2-4q小於0時,r=a+ib,k=a-ib(b≠0)是一對共軛復根,y*=1/2(y1+y2)是方程的實函式解。
2樓:晏衍諫曉楓
求微分方程y''+3y'+2y=3xe^(-x)的通解
解:先求齊次方程
y''+3y'+2y=0的通解:
其特徵方程
r²+3r+2=(r+1)(r+2)=0的根r₁=-1,r₂=-2;
故齊次方程的通解為y=c₁e^(-x)+c₂e^(-2x)
設其特解
y*=(ax²+bx)e^(-x)
y*'=(2ax+b)e^(-x)-(ax²+bx)e^(-x)=[-ax²+(2a-b)x+b]e^(-x)
y*''=(-2ax+2a-b)e^(-x)-[-ax²+(2a-b)x+b]e^(-x)
=[ax²-(4a-b)x+2a-2b]e^(-x)
代入原式得:
[ax²-(4a-b)x+2a-2b]e^(-x)+3[-ax²+(2a-b)x+b]e^(-x)+2(ax²+bx)e^(-x)=3xe^(-x)
化簡得(2ax+2a+b)e^(-x)=3xe^(-x)
故2a=3,
a=3/2;
2a+b=3+b=0,
b=-3.
故y*=[(3/2)x²-3x]e^(-x)
於是通解為y=c₁e^(-x)+c₂e^(-2x)+[(3/2)x²-3x]e^(-x)
3樓:匿名使用者
1.對於這種型別的二階非齊次微分方程,求解的方法:
(1)先求出對應的齊次微分方程的通解:y
(2)再求出該方程的一個特解:y1
則方程的通解為:y+y1
2.方程特解的求法:
形如y''+py'+qy=acosωx+bsinωx 的方程,有如下形式的特解:y1=x^k(acosωx+bsinωx)
其中 a、b為待定係數,k的取值方法如下:
(1)當±iω不是方程y''+py'+qy=acosωx+bsinωx對應的齊次方程的特徵根時,k=0
(2)當±iω是方程y''+py'+qy=acosωx+bsinωx對應的齊次方程的特徵根時,k=1
4樓:香劍魏念之
令原方程的通解
為y=ue^,代入化簡可得:u''-u'=x(u'-x+1)'-(u'-x+1)=0積分得:u'-x+1=ae^積分化簡可得:
u=(1/2)x^2-x+ae^+b從而得原方程的通解為:y=[(1/2)x^2-x+b]e^+ae^
5樓:
e^ix=cosx+isinx
查一下尤拉公式
就是利用複數,三角函式的特點總結出來的規律,來求解。
6樓:王飛和
圖中求積分的過程,你可以先利用無窮級數求積分的方法去求
二階常係數非齊次線性微分方程特解怎麼設?
7樓:demon陌
較常用的幾個:
1、ay''+by'+cy=e^mx
特解 y=c(x)e^mx
2、ay''+by'+cy=a sinx + bcosx
特解 y=msinx+nsinx
3、ay''+by'+cy= mx+n
特解 y=ax
二階常係數線性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是實常數。自由項f(x)為定義在區間i上的連續函式,即y''+py'+qy=0時,稱為二階常係數齊次線性微分方程。
若函式y1和y2之比為常數,稱y1和y2是線性相關的;若函式y1和y2之比不為常數,稱y1和y2是線性無關的。特徵方程為:λ^2+pλ+q=0,然後根據特徵方程根的情況對方程求解。
擴充套件資料:
通解=非齊次方程特解+齊次方程通解
對二階常係數線性非齊次微分方程形式ay''+by'+cy=p(x)
其中q(x)是與p(x)同次的多項式,k按α不是特徵根、是單特徵根或二重特徵根(上文有提),依次取0,1或2.
將y*代入方程,比較方程兩邊x的同次冪的係數(待定係數法),就可確定出q(x)的係數而得特解y*。
多項式法:
設常係數線性微分方程y''+py'+qy =pm
f″(λ)/2!z″+f′(λ)/1!z′+f(λ)z=pm(x) ,這裡f(λ)=λ^2+pλ+q為方程對應齊次方程的特徵多項式。
升階法:
設y''+p(x)y'+q(x)y=f(x),當f(x)為多項式時,設f(x)=a0x^n+a1x^(n-1)+…+a(n-1)x+an,此時,方程兩邊同時對x求導n次,得
y'''+p(x)y''+q(x)y'=a0x^n+a1x^(n-1)+…+a(n-1)x+an……
y^(n+1)+py^(n)+qy^(n-1)=a0n!x+a1(n-1)!
y^(n+2)+py^(n+1)+qy^(n)=a0n!
令y^n=a0n!/q(q≠0),此時,y^(n+2)=y^(n+1)=0。由y^(n+1)與y^n通過倒數第二個方程可得y^(n-1),依次升階,一直推到方程y''+p(x)y'+q(x)y=f(x),可得到方程的一個特解y(x)。
8樓:匿名使用者
(1)y」+3y』+2y=xe^-x
特解 y*=ax+b(這是錯的,最起碼得有個e^-x吧?)(2)y」+3y』+2y=(x² + 1)e^-x特解y*=x(ax²+bx+c)e^-x
-------------------------------1、xe^-x前的多項式為x,所以設qm(x)是qm(x)=ax+b,由於-1是特徵方程的單根,所以特解為
y*=x(ax+b)e^(-x)
2、(x²+1)e^-x前的多項式為二次,所以設qm(x)是qm(x)=ax²+bx+c,由於-1是特徵方程的單根,所以特解為y*=x(ax²+bx+c)e^-x
把特解帶入原微分方程,待定係數法求出引數a、b、c。
二階常係數非齊次線性微分方程怎麼解?怎麼設? 10
9樓:烏漆麻黑的
①先寫出特徵方程,解出r根
②在看f(x)為哪種形式,設出特解形式。
要記得這些公式
二階常係數非齊次線性微分方程的特解? 100
10樓:鮮辭支念柏
設二階微分方程x´´+ax´+bx=f(t),非齊次項f(t)=p(t)e^(λt),其中a、b為常數,p(t)為t的n次多項式。若λ為方程內的k重特徵根,則特解的容
形式為x(t)=t^(k)q(t)e^(λt),其中q(t)為待定n次多項式,k=0,1,2。
11樓:正方形
對於線性常微分方程,每一個具體的解都是其特解。可以用眼睛看,也可以求。
12樓:匿名使用者
^^^兩次用分部積分法,再解出.
∫e^t(sint)^2dt=e^t(sint)^內2-∫容e^tsin2tdt
∴ ∫e^t(sint)^2dt=e^t(sint)^2-1/5e^tsin2t+2/5e^tcos2t+c
求二階常係數非齊次線性微分方程y"-y'-2y=x的特解
13樓:卯又琴菅騰
齊次方程y''-y'-2y=0的特徵方抄程:r^2-r-2=0(r-2)(r+1)=0
r1=2
r2=-1
以上齊次方程y=c1e^(2x)+c2e^(-x)方程右邊f(x)e^(入x)=xe^(0x)入=0不是特徵方程的根。
故設y=ax+b
(因為x是一次的)
y'=a
y''=0代入原方程y''-y'-2y=x0-a-2(ax+b)=x
-2ax+b-a=x
-2a=1
a=-1/2
b-a=0
a=b=-1/2
特解為:y=-1/2x-1/2
通解為:y=c1e^(2x)+c2e^(-x)-1/2x-1/2
二階常係數非齊次微分方程的特解怎麼設,有什麼規律
14樓:匿名使用者
嗯,這個有什麼規律,我還不真不太清楚,我可以幫你問一下數學老師。
15樓:玲玲幽魂
較常用的幾個:
ay''+by'+cy=e^mx 特解 y=c(x)e^mxay''+by'+cy=a sinx + bcosx y=msinx+nsinx
ay''+by'+cy= mx+n y=ax
16樓:安貞星
較常用的幾個:62616964757a686964616fe59b9ee7ad9431333365656637
1、ay''+by'+cy=e^mx
特解 y=c(x)e^mx
2、ay''+by'+cy=a sinx + bcosx
特解 y=msinx+nsinx
3、ay''+by'+cy= mx+n
特解 y=ax
拓展資料:
其他解法
①通解=非齊次方程特解+齊次方程通解
對二階常係數線性非齊次微分方程形式ay''+by'+cy=p(x)eax的特解y*具有形式
其中q(x)是與p(x)同次的多項式,k按α不是特徵根、是單特徵根或二重特徵根(上文有提),依次取0,1或2.
將y*代入方程,比較方程兩邊x的同次冪的係數(待定係數法),就可確定出q(x)的係數而得特解y*。
②多項式法:
設常係數線性微分方程y''+py'+qy =pm (x)e^(λx),其中p,q,λ是常數,pm(x)是x的m次多項式,令y=ze^(λz) ,則方程可化為:
f″(λ)/2!z″+f′(λ)/1!z′+f(λ)z=pm(x) ,這裡f(λ)=λ^2+pλ+q為方程對應齊次方程的特徵多項式。
③升階法:
設y''+p(x)y'+q(x)y=f(x),當f(x)為多項式時,設f(x)=a0x^n+a1x^(n-1)+…+a(n-1)x+an,此時,方程兩邊同時對x求導n次,得
y'''+p(x)y''+q(x)y'=a0x^n+a1x^(n-1)+…+a(n-1)x+an……
y^(n+1)+py^(n)+qy^(n-1)=a0n!x+a1(n-1)!
y^(n+2)+py^(n+1)+qy^(n)=a0n!
令y^n=a0n!/q(q≠0),此時,y^(n+2)=y^(n+1)=0。由y^(n+1)與y^n通過倒數第二個方程可得y^(n-1),依次升階,一直推到方程y''+p(x)y'+q(x)y=f(x),可得到方程的一個特解y(x)。
④微分運算元法:
微分運算元法是求解不同型別常係數非齊次線性微分方程特解的有效方法,使用微分運算元法求解二階常係數非齊次線性微分方程的特解記憶較為方便,計算難度也可降低。引入微分運算元d/dx=d,d^2/dx^2=d^2,則有 y'=dy/dx=dy,y''=d^2y/dx^2=d^2y
於是y''+p(x)y'+q(x)y=f(x)可化為(d^2+pd+q)y=f(x),令f(d)=d^2+pd+q,稱為運算元多項式,f(d)=d^2+pd+q即為f(d)y=f(x),其特解為y=f(x)/f(d)。
⑤降解法:
如果已知線性微分方程對應齊次方程的一個特解,就可以用降解法求出其解,線性齊次微分方程的特解也可以用降階法求出。
可降階的二階微分方程和二階常係數線性微分方程的區別
常係數齊次線性微分方程當然也是y f y,y 型的,但解,y f y,y 型的微分方程需要回積兩次分,比較麻煩 答,而常係數齊次線性微分方程由於其方程的特殊性,可以通過特殊方法,不用積分,而轉化成解一元二次的代數方程,這比作變數代換y p y 再。可降階的二階微分方程和二階常係數線性微分方程的區別 ...
對於二階齊次線性常微分方程方程的通解是其所有解的集合嗎
不一bai定是所有解的集合,高階微du分方程仍然zhi有奇解或者奇dao點問題,例如你提回到的齊次 答線性常微分方程,y c b就是它的一個奇解。奇解問題在利亞普諾夫穩定性理論當中有異常重要的地位,高階微分方程或者微分方程組的奇解與其通解穩定性有至關重要的聯絡。可以說,一般情況下只要存在奇解的方程通...
二階線性常係數微分方程求解,這個第一題,我紅筆圈出的地方為什麼是錯的
因為微分方程的特解有兩種形式,一種是微分方程的特解,另一種是滿足初始條件的特解。微分方程的特解是指滿足微分方程的一個解,它有很多個。滿足初始條件的特解是指既滿足微分方程,又滿足初始條件的那一個特解。書上給你的特解設法就是一種方法,但是並不代表這種特解的設法就這一種,也不代表你設出來的特解就是唯一的一...