什麼是f x 的最大值函式和最小值函式,與函式的最大值最小值有什麼區別

2021-04-18 07:37:52 字數 5292 閱讀 6778

1樓:zip改變

含有除自變數抄x以外的未知

襲數的f(x)具有bai

最大值函式

du和最小值函式。舉zhi個例子,f(x)=x*x+2x+1-a*a+2a-1,定義dao域為[-3, 7],那麼當x=7時,其有最大值函式為f(a)=-a*a+2a+63;當x=-1時,其有最小值函式f(a)=-a*a+2a-1。

若不含有除自變數x以外的未知數,那麼可以求解的就是f(x)的最大值和最小值。

數學中的最大值和最小值是什麼意思?如何區分呢? 5

2樓:匿名使用者

1、最大值,為已知的資料中的最大的一個值。

2、最小值,為已知的資料中的最

小的一個值。

集合的最大和最小值分別是集合中最大和最小的元素,函式的最大值和最小值被統稱為極值。

3、區分方法:

在函式影象或者集合影象中,最高點是最大值,最低點是最小值。

3樓:朝雨憶蓮

在給你的任何數中,最大的為最大值,最小的為最小值,如:1,2,3,4,5…100,其中,最小值為1,最大值為100.

4樓:匿名使用者

1,2,3中最大值為3,最小值為1.最大,最小首先要確定一個數域或者範圍或者集合,這樣討論才有意義.否則就很難說,比如自然數數集中最大值不存在或者為無窮大,最小值為1

5樓:放手一起飛

在二次函式中 最大值指a小於等於零時頂點的縱座標

最大值指a大於等於零時頂點的縱座標

6樓:落蕭星夢

最小值是最小的數值,為0,最大值,比如說1,21,和5中,21是最大值哦。1匙最小值。主要看是什麼題目,什麼情況

如何求函式的最大值與最小值??

7樓:關鍵他是我孫子

求函式的最大值與最小值的方法:

f(x)為關於x的函式,確定定義域後,應該可以求f(x)的值域,值域區間內,就是函式的最大值和最小值。

一般而言,可以把函式化簡,化簡成為:

f(x)=k(ax+b)²+c 的形式,在x的定義域內取值。

當k>0時,k(ax+b)²≥0,f(x)有極小值c。

當k<0時,k(ax+b)²≤0,f(x)有最大值c。

關於對函式最大值和最小值定義的理解:

這個函式的定義域是【i】

這個函式的值域是【不超過m的所有實數的(集合)】而恰好(至少有)某個數x0,

這個數x0的函式值f(x0)=m,

也就是恰好達到了值域(區間)的右邊界。

同時,再沒有其它的任何數的函式值超過這個區間的右邊界。

所以,我們就把這個m稱為函式的最大值。

8樓:員名酆明智

用導數可以求。

求導數的方法編輯本段

(1)求函式y=f(x)在x0處導數的步驟:

①求函式的增量δy=f(x0+δx)-f(x0)②求平均變化率

③取極限,得導數。

(2)幾種常見函式的導數公式:

①c'=0(c為常數);

②(x^n)'=

nx^(n-1)

(n∈q);

③(sinx)'

=cosx;

④(cosx)'=-

sinx;

⑤(e^x)'

=e^x;

⑥(a^x)'

=(a^x)

*ina

(ln為自然對數)

⑦(inx)'

=1/x(ln為自然對數)

⑧(logax)'=1/(xlna)

,(a>0且a不等於1)

補充一下。上面的公式是不可以代常數進去的,只能代函式,新學導數的人往往忽略這一點,造成歧義,要多加註意。

(3)導數的四則運演算法則:

①(u±v)'=u'±v'

②(uv)'=u'v+uv'

③(u/v)'=(u'v-uv')/

v^2(4)複合函式的導數

複合函式對自變數的導數,等於已知函式對中間變數的導數,乘以中間變數對自變數的導數--稱為鏈式法則。

導數是微積分的一個重要的支柱。牛頓及萊不苨茨對次做出了卓越的貢獻!

9樓:匿名使用者

^就是y=f(x)在x取任意值時,y能達到的最大值。

舉例如:

函式y=-(x-1)^2

不管x取什麼值,總有y<=0,且只有x=1時,y=0按你上面的定義說,就有:

函式y=f(x)=-(x-1)^2的定義域為所有實數,且滿足:

(1)對於任意的x∈r,都有f(x)≤0;

(2)存在x0=1(∈r),使得f(1)=0;

所以0是函式y=f(x))=-(x-1)^2的最大值。

求最大值、最小值一般都是利用配方法,想辦法把函式式變成形如y=a(x+b)^2+c的樣子;

那麼當a<0時,有最大值,且x=-b時取最大值c;

a>0時,有最小值,且x=-b時取最小值c.

10樓:白雲無忌

...........這個是定義吧,它的意思是在定義域內的任何一個數都小於或者等於某個實數m,那麼則在這個定義域內m是他的最大值;當取x0時它取到m,即取x0時取到最大值。

比如有資料(1 2 5 4 6)這個資料組,你可以理解為定義域,而在這個資料組中最大的是6,也就是說1≤6 2≤6 5≤6 4≤6 6≤6,那麼6就是這個資料組中的最大值。

如果分別用x1=1,x2=2,x3=5,x4=4,x5=6表示函式未知數,那麼當該函式取x5時函式取到最大值6。

其實也沒你想象的那麼難了,他就是文字繞來繞去,考試時你只要理解就沒問題,何況考試一般又不會考定義

11樓:匿名使用者

你的意思是你不理解m為什麼是最大值? 在它的定義域裡面它小於或等於m 那也就是說沒有一個數可以大於m 也就是m是最大值咯。

其實最值的方法很多 一般有導數法是較普遍的,下面是常用的導數公式1.y=c(c為常數) y'=0 2.y=x^n y'=nx^(n-1) 3.

y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.

y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x 8.y=cotx y'=-1/sin^2x 9.

y=arcsinx y'=1/√1-x^2 10.y=arccosx y'=-1/√1-x^2 11.y=arctanx y'=1/1+x^2 12.

y=arccotx y'=-1/1+x^2

還有一些比較特殊的 例如 一個函式的分子分母都有未知數的話 就可以採用求根法,如y=(ax+b)/cx 這時x一定有定義域的 那麼你就可以 把y直接乘以cx,也就是用這個方程來解x 得出的x用定義域表示 那就可以求出y的取值範圍了。 類似的方法還有很多 不便都寫出來 如果有疑問 你可以hi我

12樓:匿名使用者

首先,確定函式的定義域。將定義域邊界值代入函式求出函式值。然後,對函式進行一次求導,令其等於0.

解得x值,分別將求得的x值代入函式求出函式值。前後2組函式值進行比較即可得到最大值和最小值。

13樓:匿名使用者

理解的時候要每一個字扣準。

(1)對於任意的x∈i,都有f(x)≤m;

這句話是說,在該函式的定義域中其函式值都小於或者等於一個數(m)(2)存在x0∈i,使得f(x0)=m

這句話是說,在該函式的定義域中要存在這樣一個可以讓函式值等於m的x0求極值一般用求導的方法,其一階導數等於0。

14樓:匿名使用者

對於任一函式y=f(x),不同的x對應不同的y值,假如當x取a時y最大,且為b,也就是不管x取什麼值,y都小於等於b,那麼b就是這個函式的最大值啊,當然這裡是有條件的:x能取到a值,也就是說a在定義域內。

求函式最大值方法一般是:y=f(x)對x求導,令導數為0,解出x,再把求出的x代入函式中最後求出y值。

15樓:厚樺聞濃

您好在高一高二階段求函式最大值最小值

一般是利用函式在某定義域的增減性結合

最值點進行判斷還應該利用數形結合思想

直接看在某定義域的增減性在高三會用到求函式導數來進行判斷利用導函式等於0

解得疑點

再判斷疑點是極大值點還是極小值點再將疑點與定義域的x的左右端點帶入比較他們值得大小

最大的為函式最大值

最小的為函式的最小值

怎麼求f(x)的最小值和最大值

16樓:任虹穎斛疇

要看是什麼樣

復的函式了;如果是制一次函式的話bai那麼在閉區間[a,b]在起點和du終點的函式值分別是zhi它的最小和最大值dao;如果是二次函式的話就要分情況來討論了,(1)開口向上的時候,在定義域內有最小值;若是給一個區間範圍還要看看這個區間包括頂點和不包括頂點兩個類,包括頂點那麼頂點就是函式的最小值,不包括頂點的是後如果區間在函式對稱軸的右側那麼起點的函式值是最小值,如果區間在函式對稱軸的左側那麼終點的函式值是最小值;(2)開口向下的時候,在定義域內有最大值;若是給定一個區間範圍也要看這個區間是否包括頂點;如果包括頂點那麼頂點的縱座標就是函式的最大值,如果不包括頂點的且區間在對稱軸的左側那麼終點是函式的最大值,相反起點的函式值是函式的最大值;

還有指數函式對數函式的最值的求法,都要討論函式在所給的定義域內的單調性;然後再來求函式的最值。

定積分 第64題,求函式f(x)的最大值與最小值,答案是什麼意思呢?

17樓:匿名使用者

^^f(x) =∫(0->x^2) (2-t)e^(-t) dtf'(x) =2x.(2-x^2)e^(-x^2)f'(x) =0

x=0 or √

2 or -√2

f'(x)|x=0+ >0, f'(x)|x=0- <0x=0 (min)

f'(x)|x=√2+ <0, f'(x)|x=√2- >0x=√2 (max)

f'(x)|x=-√2+ <0, f'(x)|x=√2- >0x=-√2 (max)

最大值內

容 = f(√2) or f(-√2)

最大值=∫(0->2) (2-t)e^(-t) dt=-∫(0->2) (2-t) de^(-t)=-[ (2-t).e^(-t) ]|(0->2) - ∫(0->2) e^(-t) dt

=2 +[e^(-t)]|(0->2)

=2 +e^(-2) -1

=1+e^(-2)

最小值 = f(0) =0

函式的最大值和最小值,如何求函式的最大值與最小值??

解 設矩形土地的長 為a,寬為b,建築材 料的總長為x 則建築材料的總長為2a 3b x 矩形土地的總面回積為a b 216 由 答得,a 216 b,代入 得,2 216 b 3b x 兩邊同乘以b得,532 3b 2 x b 移項後得,3b 2 x b 532 0 如果x有最小值,則這個方程有唯...

已知函式f x a bsinx的最大值和最小值分別為5與1,求實數a,b的值

a 3,b 2 解析 f x max a b 5 f x min a b 1 聯立,解得 a 3,b 2 a b 5 a b 1 所以a 3 b 2 已知函式y a bsinx的最大值是5.最小值是1.求a,b的值 b 0,a b 5,a b 1,a 3,b 2,b 0,a b 1,a b 5,a ...

求函式y xx 的最大值和最小值

當x 1時 函式y x 3 x 1 3 x x 1 4當 1 x 3時 y x 3 x 1 3 x x 1 2x 2 值域 4 y 4 當x 3時 y x 3 x 1 x 3 x 1 4所以y x 3 x 1 的最大值是4,最小值是 4 我們可以用幾何的辦法來解決這個問題,將此函式看成是平面上一個數...