1樓:匿名使用者
點乘一般用於計算向量夾角,或計算物理中與做功有關的問題叉乘一般用於計算兩向量相交構成的平面的法向量或與計算與兩向量垂直的向量
2樓:匿名使用者
點乘指在片面內抄
,倆向量,一個對另bai一個的投影長度du.叉乘是在三圍空間內,倆向量頭zhi尾相接再dao平移所成平行四邊形的面積。(我自己推的,數學老師說叉乘是大學內容,我從f=bil推出來的 b作個向量,il再作個向量,f就面積值。
自己算算看吧。)原創哦!
點乘與叉乘有什麼區別?
3樓:匿名使用者
一、符號不同
點乘:點乘的符號用「 · 」表示。
叉乘:叉乘的符號用「 × 」表示。
二、結果不同
點乘:點乘得到的結果是一個數值。
叉乘:叉乘得到的結果是一個向量。
三、計算過程不同
點乘:點乘是兩個向量的模的乘積再乘上兩個向量夾角的餘弦值。
叉乘:叉乘是兩個向量的模的乘積再乘上這兩個向量夾角的正弦值。
擴充套件資料叉乘在物理領域的應用:
物理裡我們遇到的有關兩個向量叉乘的物理量有磁場裡的洛倫茲力。洛倫茲力是運動的帶電粒子在磁場中受到的力,這個力等於粒子速率v和磁感應強度b叉乘的結果再乘上粒子帶電量q。
通常是通過叉乘的右手法則來判斷這個洛倫茲力的方向。一般都是用左手定則來判斷洛倫茲力和安培力的方向的。
4樓:匿名使用者
向量的乘法有兩種,分別成為內積和外積.
內積也稱數量積,因為其結果為一個數(標量)向量a,b的內積為|a|*|b|cos,其中表示a與b的夾角向量外積也叫叉乘,其結果為一個向量,方向是按右手系垂直與a,b所在平面|a|*|b|sin
5樓:杞霞野午
點乘是向量的內積
叉乘是向量的外積
點乘,也叫數量積。結果是一個向量在另一個向量方向上投影的長度,是一個標量。
叉乘,也叫向量積。結果是一個和已有兩個向量都垂直的向量。
擴充套件資料:
向量的點乘:a*b
公式:a*b
=|a|
*|b|
*cosθ
點乘又叫向量的內積、數量積,是一個向量和它在另一個向量上的投影的長度的乘積;是標量。
點乘反映著兩個向量的「相似度」,兩個向量越「相似」,它們的點乘越大。
向量的叉乘:a∧b
a∧b=
|a|*
|b|*
sinθ
向量積被定義為:
模長:(在這裡θ表示兩向量之間的夾角(共起點的前提下)(0°≤θ≤180°),它位於這兩個向量所定義的平面上。)方向:
a向量與b向量的向量積的方向與這兩個向量所在平面垂直,且遵守右手定則。(一個簡單的確定滿足「右手定則」的結果向量的方向的方法是這樣的:若座標系是滿足右手定則的,當右手的四指從a以不超過180度的轉角轉向b時,豎起的大拇指指向是c的方向。
c=a∧b)參考資料:點積—搜狗百科,向量積—搜狗百科
6樓:遊萱斐水
有,點乘的結果是一代數,而叉乘的結果是一向量.
點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。
向量a·向量b=|a||b|cos
在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。
叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此向量的外積不遵守乘法交換率,因為
向量a×向量b=-向量b×向量a
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=|i
jk||a1b1
c1||a2
b2c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。
7樓:匿名使用者
a.b=|a||b|cos結果是一個標量
a*b的大小為|a||b|sin,方向是以右手系從a到b的正交方向,結果是向量
8樓:匿名使用者
點乘表示標量,相當乘以夾角的餘弦
叉乘表示向量,相當乘以夾角的正弦
9樓:
你這個問題是大學高數問題,問錯地方了!!
10樓:匿名使用者
一般性用字母之間的用點
數字間的用大叉
11樓:匿名使用者
沒區別以後x多了,就都寫點了,而且方便
高數中向量什麼時用點乘什麼時候用叉乘具體什麼時候
12樓:匿名使用者
具體問題具體分析,不過發現一般a•b用點乘axb用叉乘,但也比一定還是要看具體的用途比如選擇題求(axb)•c如果結果是一個數,就需要小括號裡用叉乘,小括號外邊用點乘,結果如果是一個向量的話,肯定都要用叉乘
13樓:
點乘得到的就是標量,做功等於fscosa,就是這樣定義的。叉乘得到的是向量,方向和前兩個垂直,常見的是f=lb×v,力的方向和b、和v垂直。
14樓:匿名使用者
看你要幹啥啊。
點乘和叉乘,得到不同東西的。理解各自的用途在因地制宜。哪有機械的記憶什麼地方用什麼的。
兩個向量相乘時什麼時候用點乘,什麼時候用叉乘?
15樓:暴血長空
看你要幹啥啊。
點乘和叉乘,得到不同東西的。理解各自的用途在因地制宜。哪有機械的記憶什麼地方用什麼的。
向量的點乘和叉乘的區別和應用有何區別
16樓:令狐孝狂婷
點乘是數量積,結果是個數,叉乘是向量積,結果是個向量,這就是本質的區別。
17樓:祭培勝向珍
·|點乘:點乘的結果是一個實數,a·b=|a|·|b|·cos,其中a,b表示a,b的夾角(幾何上是ab所構成的平行四邊形對角線的長度)。
叉乘:叉乘的結果是一個向量,當向量a和b不平行的時候,其模的大小為|a×b|=|a|·|b|·sin
(幾何上是ab所構成的平行四邊形的面積)
方向為a×b和a,b都垂直
且a,b,a×b成右手系;當a和b平行的時候,結果為0向量。
向量的點乘和叉乘有什麼區別?
18樓:匿名使用者
向量的點乘即數量積,記作a·b;其中a·b=|a|·|b|cosθ,|a|、|b|是兩向量的模,θ是兩向量之間的夾角(0≤θ≤π).以上a與b均為向量
叉乘是向量積,記作a×b,a×b=|a|·|b|sinθ,其中|a|、|b|是兩向量的模,θ是兩向量之間的夾角(0≤θ≤π).以上a與b均為向量。點乘,也叫向量的內積、數量積。
顧名思義,求下來的結果是一個數。
向量a·向量b=|a||b|cos
在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。
叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin
向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此 向量的外積不遵守乘法交換率,因為
向量a×向量b=-向量b×向量a
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),
則 向量a·向量b=a1a2+b1b2+c1c2
向量a×向量b=
| i j k|
|a1 b1 c1|
|a2 b2 c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。
19樓:123我就是哎你
分清點乘和叉乘
點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。
向量a·向量b=|a||b|cos
在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。
叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此 向量的外積不遵守乘法交換率,因為
向量a×向量b=-向量b×向量a
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則 向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=
| i j k|
|a1 b1 c1|
|a2 b2 c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。
20樓:白智竹辛
向量點乘是各向量的模相乘,不管方向;向量叉乘是各向量相乘,方向也要乘。
向量的點乘叉乘有什麼意義,向量叉乘的意義
點乘高中就學過 c ab a b cost c在a,b構成的平面內 c a b a b sint c在垂直a,b構成的平面內 向量叉乘的定義 僅限於空間向量 當向量a b平行或至少有一個零向量時,規定a b 0 零向量 當向量a b都不為零向量且不平行時,規定a b是一個與a b垂直的向量,它的模為...
兩向量叉乘的意義是什麼向量的點乘叉乘有什麼意義
說到二個向量 的叉乘,向量必須是空間向量 設向量ab 向量a 向量b,向量cd 向量a 向量b向量ab x1,y1,z1 向量cd x2,y2,z2 向量ab 向量cd y1z2 z1y2,x2z1 x1z2,x1y2 y1x2 產生一個新向量,其方向垂直於由向量ab,向量cd確定的平面,其方向由右...
向量叉乘點乘證明題大學物理向量運算證明點乘和叉乘
只需證明 a b c b a c a b c 和a b b a這兩條性質即可 c a a b a b c a c a a b c a b a a c b d a d b c 可以看下 由混積的性質a b c a b c及三重矢積的性質a b c a c b a b c 可得 a b c d a b ...