1樓:匿名使用者
如果可以出現空盒子,有n^m種方法,(n的m次冪)。
如果不可以出現空盒子,也就是n≥m,有c(n,m-1)種方法。
2樓:匿名使用者
因為這個每個球都可以選擇放入到第1,2,……,m個盒子裡因為這屬於乘法計步原理
應共有m×m×……×m 共n個m相乘
答案應是m的n次方
n個同樣的球放入m個不同的盒子裡,有多少種方法?(可以有空盒子)。分n>m和n
3樓:匿名使用者
c(m+n-1,n).
解 設a=代表m個不同的盒子構成的集合, n個同樣的球放入這m個的盒子裡,相當從m個元素中任取n個元素的可重複組合,即從a中可重複選取(a中的任意元素選取的個數不受限制,即可選0-n個)n個元素構成的組合.
如a=代表5個不同的盒子, n=6個同樣的球,則
112344表示第1個盒子放入2個球,第2,3個盒子各放入1個球,第4個盒子放入2個球,第5個盒子不放球.
222335表示第1個盒子不放球,第2個盒子放入3個球,第3個盒子各放入2個球,第4個盒子不放球,第5個盒子放入1個球.
m個元素的n個元素的可重複組合的個數為c(m+n-1,n).
c(m+n-1,n)表示從m+n-1個元素中任取n個元素的通常組合個數.
這個問題相當於整數方程
x1+x2+…+ xm=n
有多少非負的整數解。
4樓:匿名使用者
比較複雜,看這裡
將m個相同的球全部放到n個相同的盒子裡面有幾種放法
5樓:匿名使用者
我只是搬運工,本**摘自《離散數學》屈婉玲版表10.3,詳細內容請看類似書。
6樓:落日餘暉
樓主,首先相同
的球放入相同的盒子本身是沒有意義的,這道題應該是相同的球放入不同的盒子
那麼就為插板問題,在m個球中(包括兩端)插入n-1個板,板與板之間可以沒有球。
然後把題轉化為,在m+n個球中(不含兩端)插入n-1個板,板與板之間至少有一個球
一共有m+n-1個空隙,n-1個板,所以有c(m+n-1)(n-1)種方法
7樓:匿名使用者
因為盒子和球是完全相同的,考慮次序(盒子和球要編號的情形)沒有意義。這類問題可以轉化成整數的分割問題。m個相同球放入n個相同盒子可以看做求一個整數m分割成n個0到m之間的整數,使這n個整數的和為m的方法數,稱為整數的分劃。
例如,3分劃成2個數有2種方法,5分劃成3個整數有5種方法。它沒有通式,結論要看具體的問題。
8樓:匿名使用者
分析:球相同,袋子也相同,這要怎麼計數啊qaq,要既不多也不少的計數,肯定是有某一種順序,我們按照每個袋子裝球的數量降序排列,這就相當於把相同的袋子強行當成了不同的袋子,為了維護這個降序,我們一旦在第i個袋子放一個球,那麼前面的袋子都必須要放一個球,當然,我們也可以考慮不在這個位置多放一個球,我們在後面的袋子放,所以f[i][j] = f[i-j][j] + f[i][j-1].這道題和上一道題有一個很大的區別,上一道題的狀態轉移方程沒有考慮不放的情況,是因為袋子是相同的,放在這個袋子和那個袋子是沒有區別的,我們硬性規定第i個球必須放在我們選定的j個袋子中,而這一題雖然題面上說袋子相同,但是我們硬性規定是不同的,所以可以考慮不放的情況。
總結:這四道題可以得出一個規律:袋子不同用數學,袋子相同用dp,不同和相同的區別在於,不同的話我們可以單獨考慮第i個,相同的話必須要變成「不同」的才能單獨考慮!
9樓:不吃貓的魚
樓上這兄弟是我見過的第一個自己把題目改了做一遍答案還和原題一樣的人。
n個相同的球,放入m個相同的盒子中,允許有盒子為空,請問有多少種方法?
10樓:河星怎探索
解法有很多種,這只是一種。
11樓:王新花
m的n次方個
這個問題可以分開來一個球一個球考慮,從每個球的放法推到總共的放法
一個球有可能放在m個盒子裡,有m種選擇,同樣的,另一個球也有m種選擇,每個球都有m種選擇,一共有n個球,也就是n個m相乘,共有m的n次方個方法
r個相同的球放入n個不同的盒子裡,每個盒子至多放一個球,問有多少种放法?詳細說下解題過程,謝謝!
12樓:匿名使用者
分析:分步放球,按照乘法原理計算。
乘法原理就是做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法,那麼完成這件事共有n=m1×m2×m3×…×mn種不同的方法。
1、第一個球可以放到n個盒子裡,有n种放法。
2、第二個球只能放到剩餘的(n-1)個空盒子中,所以第二個球有(n-1)种放法。
3、依次類推,第r個球只能放到(n-r+1)個空盒子中,有(n-r+1)种放法。
分步過程按照乘法原理,把每一步進行相乘,得到:
p=n*(n-1)*(n-2)*...*(n-r+1),即p(n,r)种放法。
13樓:匿名使用者
第一個球有n种放法。第一個球放下後,就只有n-1個空盒子
了,所以第二個球有n-1种放法。...
到第r個球只有n-r+1個空盒子了,有n-r+1中放法。一共有n*(n-1)*(n-2)*...*(n-r+1)=n!/r!中放法。
將n個相同的小球放入m個相同的盒子(n>m),盒子可以空,有多少種方法。(不要窮舉法)
14樓:匿名使用者
(c+1)/2 (m-1)在上,(n-1)在下,具體稍後解釋,我要出去下
15樓:匿名使用者
解:有m的n次方种放法。理由:放第一個球時有m种放法,因為盒子可以空,第二個球也有m种放法,……,第n個球還是有m种放法。n個球放完,事件完成,用乘法,故得。
排列組合問題,m個完全相同的球,放入n個不同的盒子中,有多少种放法,一個盒子可以放多個球。不要告訴
16樓:saya小透明
隔板法模型。
比如你有4個球(m個),分給3個盒子(n個),那就是2個隔板(n-1),球橫著排一排,那就有五個位置可以擺隔板,中間三個,左右兩個。
比如你把第一個隔板放在最左邊,第二個隔板放第一個球右邊,那這堆球就是被分成了3份,第一個版左邊是第一盒的,兩個版中間第二盒,第二個版右面第三盒。
第一個板5种放法,第二個板5種方法
17樓:匿名使用者
同學,既然你懂了,可以講給我聽聽嘛。我完全看不懂ಥ_ಥ
其他都一樣,就多一個條件m>n,該怎麼做??
m個球放n個盒子(盒子相同,球也相同)有多少種方法
18樓:廬陽高中夏育傳
用組合插板法;
將m個球用(n-1)板隔開有c(m-1 , n-1)種方法;
m-1是下標,
把不同的球放入不同的盒子中,有多少种放法
總共的情況有4 4種,是把相同的球都看成有不同編號的排列總數.空出一個盒子的組合有c 4,1 4 種.在三個盒子裡放球的方式有211型,2裡面實際上有c 4,2 6種,然後2 1 1的排列有3 6種.所以空出一個盒子總共的放球方式有4 6 6 144種,其概率是144 256 9 16 有4!24种...
把球裝在盒子裡,每個盒子裝的同樣多,有幾種裝法?每種裝法各需要幾個盒子
8種裝法 1 36個球裝在36個盒子裡,每個盒子裝1個 2 36個球裝在2個盒子裡,每個盒子裝18個 3 36個球裝在18個盒子裡,每個盒子裝2個 4 36個球裝在3個盒子裡,每個盒子裝12個 5 36個球裝在12個盒子裡,每個盒子裝3個 6 36個球裝在4個盒子裡,每個盒子裝9個 7 36個球裝在...
把球裝在盒子裡,每個盒子裝的同樣多,有幾種裝法 每種裝法各需要幾個盒子
36 1 36 36 2 18 36 3 12 36 4 9 36 6 6 有9種每盒一個,共要36個盒子 每盒36個,要一個盒子 每盒2,共要個18盒子 每盒18,共要2個盒子 每盒3,共要12個盒子 每盒12,共要3個盒子 每盒4,共要9個盒子 每盒9,共要4個盒子 每盒6,共要6個盒子 把36...