1樓:匿名使用者
1.a<0且△=b²-4ac<0
2.設拋物線為y=-(x-a)^2+b 頂點為(a,b)頂點沿著曲線y=2x^2+x+1滑動
b=2a^2+a+1
經過點(1,4)
4=-(1-a)^2+b
得a=1,b=4 或 a=-4,b=29拋物線為y=-(x-1)^2+4 或 y=-(x+4)^2+293.(1)△=b²-4ac=m²-4(-m+3)=m²+4m-12>0
m<-6 或 m>2
(2)配方得y=(x+m/2)²+[4-1/4(m+2)²]頂點最高[4-1/4(m+2)²]取最大值為4 此時m=-2(3)頂點座標為(m/2,-1/4(m²+4m-12))x^2+mx-m+3=0
x1+x2=-m
x1*x2=-m+3
|x1-x2|=√(m²+4m-12)
△pab為等邊三角形
(√3)|x1-x2|/2=1/4(m²+4m-12)(√3)√(m²+4m-12)/2=1/4(m²+4m-12)m=-2±2√7
2樓:匿名使用者
1、a小於零且判別式小於零。
2、y=(x+2/3)^2+11/9和y=(x-1)^2+4
3、⑴m>2或m<-6
3樓:匿名使用者
1.a<0且b平方-4ac<0.
2.設平移後的拋物線為y=-(x-m)^2+h,由題意得
h=2m^2+m+1,4=-(1-m)^2+h,解得m=1 或m=-4,則h=4或29
所以此拋物線的解析式為y=-(x-1)^2+4或y=-(x+4)^2+29.
3.(1)由b^2-4ac>0得,m^2-4(-m+3)>0,
因式分解為(m-2)(m+6)>0,則兩個因式同號,得不等式組,解得m>2或m<-6.
(2)由頂點公式得y最大值=(-m^2-4m+12)/4
=-1/4m^2-m+3
看成是y關於m的二次函式關係,則
當m=-2時,拋物線的頂點位置最高.
(3)點p為[-m/2,-(b^2-4ac)/4]
設x^2+mx-m+3=0,解得x=-m/2±√(b^2-4ac)/2
所以線段ab=√(b^2-4ac),ab邊上的高為(b^2-4ac)/4,
由等邊三角形的性質得(b^2-4ac)/4=√(b^2-4ac)/2*√3,
設b^2-4ac=t,則方程換元為t/4=√(3t)/2,解得t=0(捨去)t=12
即m^2-4(-m+3)=12,解得m=2+2√7或m=2-2√7(與(1)的結果矛盾,捨去)
所以當m=2+2√7時,△pab為等邊三角形。
二次函式題目,麻煩快些!
題目太多了 一條一條的解答吧。1.由a點得,c 1 由b點得,a b 1,即a b 1,所以根的判別式 b 2 4ac b 2 4 b 1 b 2 4b 4,你題目有誤嗎?不能證明啊。由對稱軸為x 1,得b 2a,又a b 1,所以b 2 3,a 1 3,所以拋物線解析式為 y 1 3x 2 2 3...
二次函式如何求導,二次函式的求導
對於x的冪的求導,只用把x的指數寫在x前面,然後x的指數減去1。x n nx n 1 如 x 2 2xy 6x 2 5x 3 的導數 y 6x 5求導在解決解析式問題 如某圓的切線之類的 極值問題等等都有作用的。變數 不同於 未知數 不能說 二次函式是指未知數的最高次數為二次的多項式函式 未知數 只...
二次函式頂點式,二次函式頂點式怎麼計算
解 求二次函式抄頂點式 1 整理成一襲般式 y ax 2 bx c baia,b,c為常數,a 0 2 利用配方法寫出 du頂點式 zhiy a x h 2 k 則拋物線dao的頂點p h,k 對應二次函式y ax 2 bx c其頂點座標為 b 2a,4ac b 2 4a 你好,解bai決如下 一般...