1樓:北京京彩化妝學校
極限就是無限設未知數無限接近某個數時.y的取值.
學習高等數學需要什麼高中基礎?
2樓:飄飄記
基礎知識儘量都學紮實的好。主要需要以下基礎:
1、導數和函式、複變函式與積分。
2、導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。
3、複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。
高等數學指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。
廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。
指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數。
幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。
主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。工科、理科研究生考試的基礎科目。
3樓:河傳楊穎
1、導數和函式、複變函式與積分、概率論、線性代數。
2、複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。
3、概率論的學習,不再像高中是學習排和組合,當然學好這部分的概率和期望對以後理解很有幫助,概率論更多的是學習其他概率分佈模型。
4、線性代數的學習,是一門工程數學,解方程n元一次組,n維相量、矩陣等等,實際中應用廣泛,好好理解下相量空間,這門學科跟以前聯絡不多,好好學一定會學好的。
在中國理工科各類專業的學生(數學專業除外,數學專業學數學分析),學的數學較難,課本常稱「高等數學」;文史科各類專業的學生,學的數學稍微淺一些,課本常稱「微積分」。
理工科的不同專業,文史科的不同專業,深淺程度又各不相同。研究變數的是高等數學,可高等數學並不只研究變數。至於與「高等數學」相伴的課程通常有:
線性代數(數學專業學高等代數),概率論與數理統計(有些數學專業分開學)。
數學的計算性方面。在初等數學中甚至佔了主導的地位。它在高等數學中的地位也是明顯的,高等數學除了有很多理論性很強的學科之外,也有一大批計算性很強的學科,如微分方程、計算數學、統計學等。
在高度抽象的理論裝備下,這些學科才有可能處理現代科學技術中的複雜計算問題。
最基本的極限過程是數列和函式的極限。數學分析以它為基礎,建立了刻畫函式區域性和總體特徵的各種概念和有關理論,初步成功地描述了現實世界中的非均勻變化和運動。另外一些形式上更為抽象的極限過程,在別的數學學科中也都起著基本的作用。
還有許多學科的研究物件本身就是無窮多的個體,也就說是無窮集合,例如群、環、域之類及各種抽象空間。
4樓:百度使用者
基礎知識儘量都學紮實的好。
1.導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。
2.複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。
3.概率論的學習,不再像高中是學習排和組合,當然學好這部分的概率和期望對以後理解很有幫助,概率論更多的是學習其他概率分佈模型。
4.線性代數的學習,是一門工程數學,解方程n元一次組,n維相量、矩陣等等,實際中應用廣泛,好好理解下相量空間,這門學科跟以前聯絡不多,好好學一定會學好的。
總之,好學基礎知識,對你的深造學習很有幫助;專業不同,可能學的學科數學也有少許不同,不過不管怎樣,學好基礎知識不是件壞事,更多的體驗還要等你到了大學才能更好地感受。呵呵,希望對你有所幫助。
5樓:匿名使用者
基本不等式知識,函式知識,三角函式公式等等,說實話高等數學和高中數學差別很大,高中的知識也基本難以運用到高等數學上,基本上是不需要什麼基礎的,進入大學學高數大家相當於都是零基礎開始
6樓:我是一頭豬
數學,重要的是思想。
然而,高中數學給予了我們必要的初等數學的知識,如導數,將來發展極限
如將來的空間解析幾何
哪怕是最簡單的集合,將來也為數論做了一定的基礎。
高中數學書上公式所給的推導充滿了數學思想,很重要。
大學數學,或者叫高數,離不開最基礎的。
高等數學的極限定義是什麼意思?
7樓:drar_迪麗熱巴
定義:設為一無窮數列,如果存在常數a對於任意給定的正數ε(不論它多麼小),總存在正整數n,使得當n>n時的一切xn,均有不等式|xn - a|<ε成立,那麼就稱常數a是數列的極限,或稱數列收斂於a。記為lim xn = a 或xn→a(n→∞)。
』極限思想』方法,是數學分析乃至全部高等數學必不可少的一種重要方法,也是『數學分析』與在『初等數學』的基礎上有承前啟後連貫性的、進一步的思維的發展。
數學分析之所以能解決許多初等數學無法解決的問題(例如求瞬時速度、曲線弧長、曲邊形面積、曲面體的體積等問題),正是由於其採用了『極限』的『無限逼近』的思想方法,才能夠得到無比精確的計算答案。
人們通過考察某些函式的一連串數不清的越來越精密的近似值的趨向,趨勢,可以科學地把那個量的極準確值確定下來,這需要運用極限的概念和以上的極限思想方法。
8樓:匿名使用者
我想知道為什麼不能n 數學上的極限 是什麼意思? 9樓:縱橫豎屏 數學中的「極限」指:某一個函式中的某一個變數,此變數在變大(或者變小)的永遠變化的過程中,逐漸向某一個確定的數值a不斷地逼近而「永遠不能夠重合到a」(「永遠不能夠等於a,但是取等於a『已經足夠取得高精度計算結果)的過程中。 此變數的變化,被人為規定為「永遠靠近而不停止」、其有一個「不斷地極為靠近a點的趨勢」。極限是一種「變化狀態」的描述。此變數永遠趨近的值a叫做「極限值」(當然也可以用其他符號表示)。 以上是屬於「極限」內涵通俗的描述,「極限」的嚴格概念最終由柯西和魏爾斯特拉斯等人嚴格闡述。 10樓:匿名使用者 極限 在高等數學中,極限是一個重要的概念。 極限可分為數列極限和函式極限,分別定義如下。 首先介紹劉徽的"割圓術",設有一半徑為1的圓,在只知道直邊形的面積計算方法的情況下,要計算其面積。為此,他先作圓的內接正六邊形,其面積記為a1,再作內接正十二邊形,其面積記為a2,內接二十四邊形的面積記為a3,如此將邊數加倍,當n無限增大時,an無限接近於圓面積,他計算到3072=6*2的9次方邊形,利用不等式an+1n時,不等式 |xn - a|<ε 都成立,那麼就成常數a是數列|xn|的極限,或稱數列|xn|收斂於a。記為lim xn = a 或xn→a(n→∞) 數列極限的性質: 1.唯一性:若數列的極限存在,則極限值是唯一的; 2.改變數列的有限項,不改變數列的極限。 幾個常用數列的極限: an=c 常數列 極限為c an=1/n 極限為0 an=x^n 絕對值x小於1 極限為0 函式極限的專業定義: 設函式f(x)在點x。的某一去心鄰域內有定義,如果存在常數a,對於任意給定的正數ε(無論它多麼小),總存在正數δ ,使得當x滿足不等式0<|x-x。|<δ 時,對應的函式值f(x)都滿足不等式: |f(x)-a|<ε 那麼常數a就叫做函式f(x)當x→x。時的極限。 函式極限的通俗定義: 1、設函式y=f(x)在(a,+∞)內有定義,如果當x→+∽時,函式f(x)無限接近一個確定的常數a,則稱a為當x趨於+∞時函式f(x)的極限。記作lim f(x)=a ,x→+∞。 2、設函式y=f(x)在點a左右近旁都有定義,當x無限趨近a時(記作x→a),函式值無限接近一個確定的常數a,則稱a為當x無限趨近a時函式f(x)的極限。記作lim f(x)=a ,x→a。 函式的左右極限: 1:如果當x從點x=x0的左側(即x〈x0)無限趨近於x0時,函式f(x)無限趨近於常數a,就說a是函式f(x)在點x0處的左極限,記作x→x0-limf(x)=a. 2:如果當x從點x=x0右側(即x>x0)無限趨近於點x0時,函式f(x)無限趨近於常數a,就說a是函式f(x)在點x0處的右極限,記作x→x0+limf(x)=a. 注:若一個函式在x(0)上的左右極限不同則此函式在x(0)上不存在極限 函式極限的性質: 極限的運演算法則(或稱有關公式): lim(f(x)+g(x))=limf(x)+limg(x) lim(f(x)-g(x))=limf(x)-limg(x) lim(f(x)*g(x))=limf(x)*limg(x) lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等於0 ) lim(f(x))^n=(limf(x))^n 以上limf(x) limg(x)都存在時才成立 lim(1+1/x)^x =e x→∞無窮大與無窮小: 一個數列(極限)無限趨近於0,它就是一個無窮小數列(極限)。 無窮大數列和無窮小數列成倒數。 兩個重要極限: 1、lim sin(x)/x =1 ,x→0 2、lim (1 + 1/x)^x =e ,x→∞ (e≈2.7182818...,無理數) 舉兩個例子說明一下 一、0.999999......=1? (以下一段不作證明,只助理解——原因:小數的加法的第一步就是對齊數位,即要知道具體哪一位加哪一位才可操作,下文中0.33333......的加法使用小數點與小數點對齊並不可以保證以上標準,所以對於無限小數並不能做加法。 既然不可做加法,就無乘法可言了。) 誰都知道1/3=0.333333......,而兩邊同時乘以3就得到1=0.999999......,可就是看著彆扭,因為左邊是一個「有限」的數,右邊是「無限」的數。 10×0.999999...... —1×0.999999......=9=9×0.999999...... ∴0.999999......=1 二、「無理數」算是什麼數? 我們知道,形如根號2這樣的數是不可能表示為兩個整數比值的樣子的,它的每一位都只有在不停計算之後才能確定,且無窮無盡,這種沒完沒了的數,大大違揹人們的思維習慣。 結合上面的一些困難,人們迫切需要一種思想方法,來界定和研究這種「沒完沒了」的數,這就產生了數列極限的思想。 類似的根源還在物理中(實際上,從科學發展的歷程來看,哲學才是真正的發展動力,但物理起到了無比推動作用),比如瞬時速度的問題。我們知道速度可以用位移差與時間差的比值表示,若時間差趨於零,則此比值就是某時刻的瞬時速度,這就產生了一個問題:趨於無限小的時間差與位移差求比值,就是0÷0,這有意義嗎(這個意義是指「分析」意義,因為幾何意義頗為直觀,就是該點切線斜率)? 這也迫使人們去為此開發出合乎理性的解釋,極限的思想呼之欲出。 真正現代意義上的極限定義,一般認為是由魏爾斯特拉斯給出的,他當時是一位中學數學教師,這對我們今天中學教師界而言,不能不說是意味深長的。 幾個常用數列的極限 an=c 常數列 極限為c an=1/n 極限為0 an=x^n 絕對值x小於1 極限為0 [編輯本段]關於家教. 極限....彭格列家族晴之守護者笹川了平的口頭禪.一個時時刻刻都很極限的男人. 由於數列的n為正整數,所以對1 取整數,就是取整的意思 應該是n 1 當n n時,對所有的 0 有 xn a 高數極限裡的那個n取1 整是什麼意思,我記得是去小於1 的整數部,n 1 e 就是取不超過1 e的最大整數 等於也可以,只要能取到就好了。極限定義中 是啥意思?答 1 數列的極限 設有數列 ... 分母的極限是0,如果分子的極限不是0 那麼這個分式趨於無窮大。為什麼說分母的極限是0,那分子的極限也是0?如果此時分子極限不是0的話,假定是一個數a 那麼a 0 為無窮大,極限就不存在 這一題其實是運用洛比達法則,洛比達法則在使用時應該是分母的極限是0,分子的極限也是0 因為只有分子也為0,整個極限... 這些人中不乏有主持人,演員,他們很明白做綜藝的方式,並不是乾巴巴的一成不變的套路,看這個節目,給人一種特別緊張的感覺,那些環節的設計特別自然,看這個節目起碼我們不會 尬笑 迪麗熱巴近期口碑很差,為什麼還能加入東方衛視極限挑戰?迪麗熱巴至今出道也有六年了,個人覺得她從出道到現在的口碑以及人氣都非常的不...數列的極限中有N1是什麼意思,高數極限裡的那個N取1整是什麼意思,我記得是去小於1的整數部,
為什麼說分母的極限是0,那分子的極限也是
《極限挑戰》為什麼口碑很好,在《極限挑戰》中的張藝興人品很好,為什麼之前很多人黑他?