怎麼理解單調有界的函式必有極限

2021-03-03 21:01:37 字數 2549 閱讀 4808

1樓:手機使用者

「單調有界抄

數列必有極限」襲是微積分學的基本定理之一。數列的極限比較簡單,都是指當n→∞(實際上是n→+∞)時的極限,所以我們只要說求某某數列的極限(不必說n是怎麼變化的),大家都明白的。 函式的極限就比較複雜,如果只說求某某函式的極限,別人是不明白的,還必須要指明自變數(例如x)是如何變化的。

考慮自變數的變化趨勢,有x→x0(x0是某個實數,這有多少種?)與x→∞;細分的話,還有x從左邊趨向於x0、從右邊趨向於x0、趨向於正無窮大、趨向於負無窮大。 還不要忘記,我們研究函式的極限是有前提條件的:

研究x→x0時的極限,要求函式在x0某個去心鄰域內有定義;研究x→∞時的極限,要求存在正數x,當|x|>x時函式有定義。 只有在滿足前提條件下,才可以談這個函式此時的極限存在與不存在。 你只給出函式單調有界,既不知道函式的定義域是怎樣的,又不知道自變數如何變化,這樣情形下談函式的極限根本就沒有絲毫的意義。

高數,單調有界函式必有極限這句話怎麼理解?

2樓:匿名使用者

不可以bai。

函式的極限情形比數列要du複雜的多zhi。數列只是在變數daon→∞時單調有界版則必有極限,而權函式的變數變化則分多種情況:x→∞(+∞或-∞);x→a(a是常數,+a或-a)。

左右極限存在但不相等,則函式極限不存在。並且要考慮函式是否存在間斷點

單調有界函式有極限嗎

3樓:匿名使用者

圖打**的復活一次看個夠

怎麼理解「單調有界的函式必有極限」 「單調」是指

4樓:數學劉哥

在定義域上隨著自變數的增大,單調遞增或者單調遞減,都是單調

為什麼單調有界函式未必有極限,而單調有界數列必有極限?

5樓:老伍

「單調有界數列必有極限」是微積分學的基本定理之一。數列的極限比較簡單,都是指當n→∞(實際上是n→+∞)時的極限,所以我們只要說求某某數列的極限(不必說n是怎麼變化的),大家都明白的。

函式的極限就比較複雜,如果只說求某某函式的極限,別人是不明白的,還必須要指明自變數(例如x)是如何變化的。

考慮自變數的變化趨勢,有x→x0(x0是某個實數,這有多少種?)與x→∞;細分的話,還有x從左邊趨向於x0、從右邊趨向於x0、趨向於正無窮大、趨向於負無窮大。

還不要忘記,我們研究函式的極限是有前提條件的:

研究x→x0時的極限,要求函式在x0某個去心鄰域內有定義;研究x→∞時的極限,要求存在正數x,當|x|>x時函式有定義。

只有在滿足前提條件下,才可以談這個函式此時的極限存在與不存在。

你只給出函式單調有界,既不知道函式的定義域是怎樣的,又不知道自變數如何變化,這樣情形下談函式的極限根本就沒有絲毫的意義。

6樓:故人知

舉個簡單例子,分段函式x+1和x-1

為什麼單調有界函式未必有極限而單調有界數列必有極限

7樓:老伍

「單調有界數列必有極限」是微積分學的基本定理之一。數列的極限比較簡單,都是指當n→∞(實際上是n→+∞)時的極限,所以我們只要說求某某數列的極限(不必說n是怎麼變化的),大家都明白的。

函式的極限就比較複雜,如果只說求某某函式的極限,別人是不明白的,還必須要指明自變數(例如x)是如何變化的。

考慮自變數的變化趨勢,有x→x0(x0是某個實數,這有多少種?)與x→∞;細分的話,還有x從左邊趨向於x0、從右邊趨向於x0、趨向於正無窮大、趨向於負無窮大。

還不要忘記,我們研究函式的極限是有前提條件的:

研究x→x0時的極限,要求函式在x0某個去心鄰域內有定義;研究x→∞時的極限,要求存在正數x,當|x|>x時函式有定義。

只有在滿足前提條件下,才可以談這個函式此時的極限存在與不存在。

你只給出函式單調有界,既不知道函式的定義域是怎樣的,又不知道自變數如何變化,這樣情形下談函式的極限根本就沒有絲毫的意義。

8樓:匿名使用者

函式有連續性問題,數列沒有(數列必然不連續),所以函式的可以求定義域中任意一點的極限。但是數列就只能求無窮大時的極限了。

例如f(x)=arctnx(x≤0),arctnx+1(x>0),這個分段函式是有界函式,在x∈r上都有當x0>x1時,有f(x0)>f(x1)。所以是x∈r上的單調增函式。但是此函式在x=0處無極限(左極限不等於右極限)

但是對數列是無法求n=1、2......這些值時的極限,只能求n→∞時的極限。

9樓:有白危成益

同濟課本上對這個定理的說明是:

對於這個定理我們不做證明,只是給出它的在數軸上的幾何意義,你可以參看一下.若要考試這個問題不會考定理證明的,而是要你先用證明某個數列的單調性,然後再證明這個數列的有界性,從而得出這個數列必是收斂的,也就是有極限存在,

然後在數列滿足的已知等式兩邊取極限假設為a,然後求方程解出a,這個a就是數列的極限值.

簡單的說,就是跟根據這個準則然後尋找兩個條件從而說明極限的存在,然後算出極限值.

單調有界數列必有極限怎麼證明,怎麼證明單調有界數列必有極限

設單調有界 不妨bai設單增 du,那麼存在m x n 任zhi意n 所以有上確界,記作 daol 對任意正數 回a,存在自然數n,使得x n l a 因為x n 單增答,所以當n n時,l a所以 x n l 所以極限存在,為l 怎麼證明單調有界數列必有極限?因為函式有界,所以函式的值域有界 所以...

單調有界數列必有極限如何證明,怎麼證明單調有界數列必有極限

同濟來課本上對這個定理的說明是自 對於這個定理我們不做證明,只是給出它的在數軸上的幾何意義,你可以參看一下.若要考試這個問題不會考定理證明的,而是要你先用證明某個數列的單調性,然後再證明這個數列的有界性,從而得出這個數列必是收斂的,也就是有極限存在,然後在數列滿足的已知等式兩邊取極限假設為a,然後求...

單調函式一定有極限嗎,為什麼單調有界函式未必有極限,而單調有界數列必有極限

不一定.單調函式和極限函式是兩個不同概念.是否有極限 和是否為單調函式無關.純單調函式可以是無限遞增或遞減,極限為無窮大 不一定,比如單調遞增函式y x,這個函式是發散的 函式極限 復是具體的概念,x趨近於某個制值時函式的極限,或者x趨近於 時函式的極限,或者x趨近於 時函式的極限。要弄清楚x趨近於...