1樓:angela韓雪倩
n(0,σ^2)
e(x1+x2)=ex1+ex2=0
d(x1+x2)=dx1+dx2=2σ^2x1+x2~n(0,2σ^2)
同理:x1-x2~n(0,2σ^2)
所以1/√2σ(x1+x2)~n(0,1)1/√2σ(x1-x2)~n(0,1)
所以1/2σ^2(x1+x2)^2~x^2(1) x^2(n)代表自由度為n的卡方分佈
同理1/2σ^2(x1-x2)^2~x^2(1)令a=1/2σ^2(x1+x2)^2 b=1/2σ^2(x1-x2)^2
所以(x1+x2)^2/(x1-x2)^2=1/2σ^2(x1+x2)^2/1/2σ^2(x1-x2)^2=a/b
=(a/1)/(b/1)
而這就是f(1,1)分佈的定義
所以(x1+x2)^2/(x1-x2)^2~f(1,1)
2樓:薔祀
^p((x1+x2)^2/(x1-x2)^2<4)的解為f(1,1)。
解:本題利用了正態分佈的性質求解。
因為n(0,σ^2),
則有:e(x1+x2)=ex1+ex2=0
d(x1+x2)=dx1+dx2=2σ^2
x1+x2~n(0,2σ^2)
同理可得:x1-x2~n(0,2σ^2)
所以1/√2σ(x1+x2)~n(0,1)
1/√2σ(x1-x2)~n(0,1)
所以1/2σ^2(x1+x2)^2~x^2(1) x^2(n)代表自由度為n的卡方分佈。
同理1/2σ^2(x1-x2)^2~x^2(1)
令a=1/2σ^2(x1+x2)^2 b=1/2σ^2(x1-x2)^2
所以(x1+x2)^2/(x1-x2)^2
=1/2σ^2(x1+x2)^2/1/2σ^2(x1-x2)^2
=a/b
=(a/1)/(b/1)
而這就是f(1,1)分佈的定義
所以(x1+x2)^2/(x1-x2)^2等於f(1,1)。
擴充套件資料:
正態分佈的性質:
1.集中性:正態曲線的高峰位於正**,即均數所在的位置。
2.對稱性:正態曲線以均數為中心,左右對稱,曲線兩端永遠不與橫軸相交。
3.均勻變動性:正態曲線由均數所在處開始,分別向左右兩側逐漸均勻下降。
4.正態分佈有兩個引數,即均數μ和標準差σ,可記作n(μ,σ)。
5.u變換:為了便於描述和應用,常將正態變數作資料轉換。
3樓:匿名使用者
接上面,上述服從f(1,1),所以有p(f(1,1)<4)=1-p(f(1,1)>=4),由f分佈和t分佈的性質知道,(tα/2(1))^2=fα(1,1),所以有p(f(1,1)>4)=1-2*p(tα/2(1)<=2)=0.7.本例主要考察f和t分佈的相關性。
設x1,x2分別是方程log2x 4 x和2 x x 4的實根,則x1 x
這一題,要根據對數函式和指數函式的圖形是關於直線y x對稱的來做。首先,你在同一直角座標系內把log2x和2 x以及直線y 4 x和y x的影象都畫出來,那麼根據log2x和2 x圖形是關於直線y x對稱的我們可以知道,再就是x1對應一個y1,同理x2對應一個y2,而根據對稱我們可以知道 x1 y2...
設fx在內可導,對任意X1,X2,當X
y x 的導數是copy y 3 x 2 當x 0的時候導bai數等於du0。所以結論至 zhi少應該改為f x 大於等於0。至於你說的分子分 dao母都大於0,f x 大於0的問題。導數是通過極限定義的,分子分母都大於0,但是這個分式的極限還是可以等於0。因為題設中的條件只能說明f x 恆為遞增函...
設總體XN2,其中2已知,X1,X
由正態分佈的性質bai可du得,xi x n zhi0,1 再由卡dao 方分佈的定義可得專,ni 1 xi x 2 n 1 即 屬 n?1 s 2 n 1 因此,d n?1 s 2 n?1 從而,d s2 2 n?1 n?1 2 n?1 故答案為 2 n?1.總體x服從正態分佈n 2 其中 2未知...