為什麼limx 0 1 x 2 x e 2ln 1 x x中ln 1 x 為什麼不能直接等價替換成x,高數求極限

2021-03-28 05:41:06 字數 3489 閱讀 4732

1樓:西域牛仔王

問題1、(1+x)^(2/x) 極限確實是 e^2,但整個式子還有其它部分,不能只對區域性求極限。

問題2、解答中第三行前一等號處,第二項正是利用了 ln(1+x) = x 求的極限。

而第一項也可以利用 ln(1+x) = x - x^2/2 快速得到答案。

2樓:楊建朝

為什麼limx→0(1+x)^2/x=e^中ln(1+x)為什麼不能直接等價替換成x,

高數求極限

具體說明如圖所示

3樓:匿名使用者

真的是好好笑哦,你居然告訴我說滿足極限的四則運演算法則?

首先,我們看你想單獨求分子第一項的極限,原因是什麼。你是不是覺得分子整體極限存在,所以根據差的極限等於極限的差,先把第一項求出來?

那麼我再問你,現在題目要你求的是分式的極限,你求分子極限是為什麼呢?說明你潛意識裡面已經想利用商的極限等於極限的商這條性質。但這條限制的前提條件在於分母極限不能是零,你想要用這條性質,你得滿足這個條件。

可是你看這道題,分母極限是零,對不對?那你為什麼要去單獨算分子極限?

4樓:匿名使用者

你想用泰勒可以鴨

但是隻到x是不夠的,看起來消掉等於零了,但其實分子上還有無窮小量,恰好分母也是一個無窮小量,兩個無窮小量的比值還不確定呢,直接拋棄分子的無窮小量就會錯誤了

你嘗試到x - 0.5*x^2就對了

5樓:匿名使用者

這裡實際上要點在於等價無窮小的階次如何確定通常情況下,分子中使用泰勒式,或者其他無窮小來替換時要特別注意保留的階次

分母是一階無窮小,那麼分子中的每一項式至少要保留到二階無窮小量進行運算

如果直接使用重要極限,實際上只是保留一階無窮小量,因此容易出現計算錯誤

你可以嘗試使用泰勒式,將分子的每一部分到4階來幫助理解這種題目,不深究的話就是洛必達法則暴力求解

6樓:匿名使用者

為什麼這個可以直接等價了,在加減法中不是不可以用等價嗎,2ln(1+x)/x,後邊不是還有一個2嗎

7樓:匿名使用者

ln(1+x)和x之間相差一個高階無窮小,有時候高階無窮小經過計算後也可以得到很大的值,尤其在涉及高階無窮小的除法和指數函式

8樓:匿名使用者

加減不能用等價無窮不替換

9樓:

a→0 lim(e^a - 1)/a=1

所以x→0 lim e^ - 1可以替換成2ln(1+x)/x - 2

為什麼limx→0-時ln(1+e^2/x)/ln(1+e^1/x)=0? 10

10樓:

第一來處等式運用了洛必達法則:源

當bailimx→

0-時,du

zhi2/x→-∞,則分dao

子=ln(1+0)=0。

當limx→0-時,1/x→-∞,則分母=ln(1+0)=0。

此時,運用洛必達法則(0/0型)再將u=1/x代入即可推出等式成立。

而對於第二處等式:

當u→-∞時,e的2u次方=0, 1+e的2u次方=0,所以,分子=2(e的2u次方)=無窮小。

當u→-∞時,e的u次方=0,1+e的u次方=1,所以,分母=e的u次方=無窮小。

但要注意,當u→-∞時,e的2u次方=(e的u次方)²,所以分子是比分母高階的無窮小,所以第二處等式成立。

擴充套件資料:無窮小量的性質:

1、無窮小量不是一個數,它是一個變數。

2、零可以作為無窮小量的唯一一個常量。

3、無窮小量與自變數的趨勢相關。

無窮小的比較:

11樓:匿名使用者

^^lim [1 + e^bai(1/x)] ^ ln(1+x) =形如

du (1 + 正∞)^0 或者 形如 (1 + 負∞)^0 一般轉化為zhi: e^ln(待求極限dao

版函式) 但這個

權題目還要討論0點處的左右極限. 右極限=lim [1 + e^(1/x)] ^ ln(1+x) =lim [e^(1/x)] ^ ln(1+x) =lim [e^[(ln(1+x) / x) ] ] =lim [e^ [ (ln(1+x) / x) ] ] =e^ lim [ (ln(1+x) / x) ] =e^1 左極限=lim [1 + e^(1/x)] ^ ln(1+x) =lim [1 + e^(- ∞)] ^ ln(1+x) =1 答案: 左右極限不相等,存在跳躍不連續點,所以極限不存在.

12樓:小籠包的旅途

先洛必達,然後替換u=1/x得到第二個等式,化簡得到lim(u→-∞)(2e^u+2e^2u)/(1+e^2u),即(0+0)/(1+0)=0

13樓:畫的夢想秀

這是∞/∞型,分式極限大的冪函式次冪大說的算,分子趨於無窮大速度更快。也可看做分子分母同除e^1/x

14樓:三寸日光

速度的問題,分子比分母更快趨於0

15樓:匿名使用者

(洛必達)分子分母求導 ln(1+e∧2u)= 1/(1+e∧2u)×(e∧(2u)) × 2

同理分母求導 然後化簡

高數求極限的問題,x趨向於0時,[(1+x)^2/x]-e^2]/2的極限

16樓:巴山蜀水

②到③,用了等價無窮小量替換。∵2ln(1+x)/x-2→0,∴e^[2ln(1+x)/x-2]~1+2ln(1+x)/x-2。

∴1+2ln(1+x)/x-2-1=2[ln(1+x)/x-1]。③到④,是分子分母同乘以x而得。

④到⑤,是應用洛必達法則而得。⑤到⑥,分子通分,約去x,即得結果。

【本題可以應用等價無窮小量替換「簡潔」求解。x→0時,ln(1+x)~x-x²/2、e^x~1+x,∴(1+x)^(2/x)=e^[(2/x)ln(1+x)]~e^[(2/x)(x-x²/2]=e^(2-x)=e²e^(-x)~e²(1-x),∴原式=lim(x→0)[e²(1-x)-e²]/x=-e²】供參考。

limx→0{1/ln(1+x)-x/[e^(x^2)-1]}這個不用麥克勞林公式能求嗎?求解答

17樓:匿名使用者

不能,因為兩項都沒極限

18樓:匿名使用者

=lim(

daoe^x²-1-xln(專1+x))

/ln(1+x)(屬e^x²-1)

=lim(e^x²-1-xln(1+x))/x*x²=lim(2xe^x²-ln(1+x)-x/(1+x))/3x²=lim(2e^x²+4x²e^x²-1/(1+x)-1/(x+1)²)/6x

=lim(4xe^x²+8xe^x²+8x³e^x²+1/(x+1)²+2/(x+1)³)/6

=(1+2)/6

=1/2

為什麼x加2派,為什麼x加2派

2 是cosx的最小正週期,加上它和不加的結果是一樣的,是為了更好的計算 是弧度制。2 是360 cos函式的最小正週期是2 所以cos x 2 cosx 把方程看出影象就好理解了,cos在影象裡就像個波,加上 就是這個影象在二維座標系裡左右移動。這就相當於一個公式,加上2 或者沒加,其實沒什麼區別...

為什麼函式y cos 2 x12) sin 2 x12 1是奇函式

y cos x 12 sin x 12 1 1 cos 2x 6 2 1 cos 2x 6 2 1 cos 2x 6 2 cos 2x 6 2 1 2 cos 2x 6 cos 2x 6 1 2 cos2x cos 6 sin2x sin 6 cos2x cos 6 sin2x sin 6 1 2 ...

計算表面張力時,F2L,到底為什麼要

能說一下是在什麼樣的情況嗎 如果是薄膜,有兩個表面 計算表面張力時,f 2 l,到底為什麼要 2 你可以這樣理解,薄膜就好比一張紙,紙的上表面與空氣有接觸,在接觸面上產生了表面張力,紙的下表面與空氣接觸,同樣產生了表面張力,因而計算時,是不是就要算兩個表面張力了。表面張力公式p 2 r中的2代表什麼...