不定積分的幾何意義,不定積分的幾何意義

2021-03-04 00:23:37 字數 4914 閱讀 6444

1樓:裘珍

^答:被積分函式是f(x)=x^2015sin^6x+sin^6x=h(x)+g(x);因為h(x)是奇函式,對稱區間積分為0;g(x)=sin^6x是偶函式,運用半形公式:(sin^2x)^3=[(1-cos2x)/2]^3=(1/8)[1-3cos(2x)-3cos^2(2x)-cos^3(2x)]=(1/8)=(1/16)[5-6cos(2x)+...

];注意到三角函式在其整個週期內的積分=0;

原式=(1/8)∫(0,π/2) 5dx=(1/8)[5x](0.π/2)=5π/16。

2樓:匿名使用者

解:原式=∫

<-π/2,π/2>x^2015•(sinx)^6dx+∫<-π/2,π/2>(sinx)^6dx

=0+2∫<0,π/2>(sinx)^6dx=(1/4)∫<0,π/2>[5/2-3cos(2x)+(3/2)cos(4x)+cos3(2x)]dx

=(1/4)•(5/2)•(π/2)

=5π/16.

定積分的幾何意義是什麼

3樓:angela韓雪倩

定積分的幾何意義是被積函式與座標軸圍成的面積,x軸之上部分為正,x軸之下部分為負,根據cosx在[0, 2π]區間的影象可知,正負面積相等,因此其代數和等於0。

定積分是積分的一種,是函式f(x)在區間[a,b]上的積分和的極限。

這裡應注意定積分與不定積分之間的關係:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式,它們僅僅在數學上有一個計算關係(牛頓-萊布尼茨公式),其它一點關係都沒有!

一個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。

4樓:yzwb我愛我家

定積分的幾何意義就是求函式f(x)在區間[a,b]中圖線下包圍的面積。即由y=0,x=a,x=b,y=f(x)所圍成圖形的面積。

具體如下圖所示:

5樓:雅默幽寒

如果對一個函式f(x)在a~b的範圍內進行定積分

則其幾何意義是該函式曲線與x=a,x=b,y=0這三條直線所夾的區域的面積,其中在x軸上方的部分的面積為正值,反之,面積為負值

6樓:浪子索隆

高中數學之定積分以及微積分的學習

7樓:匿名使用者

幾何意義不太好說,其實說幾何,就是圖形,二維或者三圍,就是求面積,或者體積

「導數」的幾何意義是什麼?「 不定積分」的幾何意義是什麼?

8樓:三思

導數:導數(derivative)是微積分中的重要基礎概念。當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。

一個函式存在導數時,稱這個函式可導或者可微分。可導的函式一定連續。不連續的函式一定不可導。

導數實質上就是一個求極限的過程,導數的四則運演算法則**於極限的四則運演算法則。

上圖為函式 y = ƒ(x) 的圖象,函式在x_0處的導數ƒ′(x_0) = lim [ƒ(x_0 + δx) - ƒ(x_0)] / δx。如果函式在連續區間上可導,則函式在這個區間上存在導函式,記作ƒ′(x)或 dy / dx。

不定積分:

在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。

這樣,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。

不定積分的幾何意義

9樓:匿名使用者

由於函式f(x)的不定積分中含有任意常數c,因此對於每一個給定的c,都有一個確定的原函式,

在幾何上,相應地就有一條確定的曲線,稱為f(x)的積分曲線。因為c可以取任意值,因此不定積分表示f(x)的一簇積分曲線,而f(x)正是積分曲線的斜率。由於積分曲線簇中的每一條曲線,對應於同一橫座標x=x0的點處有相同的斜率f(x0),所以對應於這些點處,它們的切線互相平行,任意兩條曲線的縱座標之間相差一個常數。

所以,積分曲線簇y=f(x)+c中每一條曲線都可以由曲線y=f(x)沿y軸方向上、下移動而得到。

不定積分的幾何意義是什麼

10樓:喵喵喵

若f是f的一個原函式,則稱y=f(x)的影象為f的一條積分

曲線。f的不定積分在幾何上表示f的某一積分曲線沿著縱軸方向任意平移,所得到的一切積分曲線所組成的曲線族(如圖所示)。

顯然,若在每一條積分曲線橫座標相同的點處作切線,則這些切線是相互平行的。在求原函式的具體問題中,往往先求出全體原函式f(x)+c,然後帶入特殊點或已知點,求出常數c,進而得到要求的那條積分曲線。

擴充套件資料

第一類換元法dx裡面的x求導後就可以拿到∫與dx之間,同理,∫與dx之間的東西求微分後就可以拿到dx裡面。例如:∫sin3xdx=∫sin2x•(-cosx)『dx=∫sin2xd(-cosx)。

第二類換元法就是換好元的時候,多乘一個,x=f(t)的導數,問題就在於什麼時候用,一般是分母根號裡面如果不是1-x2之類的就要用這個換元成t,看到類似的根號裡面是一個常數加x2的就要換成三角函式。

11樓:夢色十年

積分的幾何意義是被積函式與座標軸圍成的面積,x軸之上部分為正,x軸之下部分為負,根據cosx在[0, 2π]區間的影象可知,正負面積相等,因此其代數和等於0。

注意定積分與不定積分之間的關係:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式,它們僅僅在數學上有一個計算關係(牛頓-萊布尼茨公式),其它一點關係都沒有!

一個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。

擴充套件資料:

分部積分:

(uv)'=u'v+uv'

得:u'v=(uv)'-uv'

兩邊積分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx

即:∫ u'v dx = uv - ∫ uv' d,這就是分部積分公式

也可簡寫為:∫ v du = uv - ∫ u dv

常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

12樓:匿名使用者

導數的幾何意義是連續函式上所有點的切線的斜率構成的函式。不定積分的意義是求原函式。

13樓:匿名使用者

不定積分沒有啥幾何意義

利用定積分的幾何意義說明:

14樓:非人已

定積分的幾何定義:可以理解為在 oxy座標平面上,由曲線y=f(x)與直線x=a,x=b以及x軸圍成的曲邊梯形的面積值(一種確定的實數值)

那麼定積分的幾何意義知此積分計算的是cosx函式影象在[0,2π]的面積, x軸之上部分為正,x軸之下部分為負,根據cosx在[0, 2π]區間的影象可知,正負面積相等,因此其代數和等於0。參考下圖:

15樓:吧友

答:如圖

由定積分的幾何意義知,

16樓:匿名使用者

定積分的幾何意義是被積函式與座標軸圍成的面積,x軸之上部分為正,x軸之下部分為負,根據cosx在[0, 2π]區間的影象可知,正負面積相等,因此其代數和等於0。參考下圖:

17樓:巴山蜀水

解:定積分的幾何意義是函式y=f(x) 的曲線,與其定義域的區間[a,b],即a≤x≤b所圍成平面圖形的面積。

本題中,f(x)=cosx,a=0,b=2π。

考察y=cosx在[0,2π] 的變化,利用y=cosx的對稱性,可知y=cosx與x=0、x=2π所圍成的平面圖形的面積值為0,

故,∫(0,2π)cosxdx=0。

供參考。

18樓:

他的定義就是半圓啊,你畫座標就是上半圓,半徑就是a,求面積。。呵呵

不定積分的幾何意義是表示一組積分曲線族,那麼不定積分是不是表示整個平面啊?

19樓:匿名使用者

不定積分的幾何意義是表示一組積分曲線族,那麼不定積分是不是表示整個平面啊?

定積分的幾何意義是什麼?

20樓:

(1)若f(x)≥0,x∈[a,b],∫(a→b)f(x)dx的幾何意義是曲線y=f(x),x=a,x=b,y=0圍成的曲邊梯形的面積;

(2)若f(x)≤0,x∈[a,b],∫(a→b)f(x)dx的幾何意義是曲線y=f(x),x=a,x=b,y=0圍成的曲邊梯形的面積的相反數;

(3)若f(x)在區間[a,b]上有正有負時,∫(a→b)f(x)dx的幾何意義為曲線y=f(x)在x軸上方部分之下的曲邊梯形的面積取正號,曲線y=f(x)在x軸下方部分之上的曲邊梯形的面積取負號,構成的代數和。

21樓:匿名使用者

一條函式曲線與x軸及x=x1和x=x2兩條直線圍成的面積

關於不定積分的運算,計算不定積分

不定bai積分計算的是原函式 得出的du結果是一個式子 zhi定積分計算的是dao 具體的數值 內得出的借給是一個具容 體的數字 不定積分是微分的逆運算 而定積分是建立在不定積分的基礎上把值代進去相減 積分 積分,時一個積累起來的分數,現在網上,有很多的積分活動.象各種電子郵箱,等.在微積分中 積分...

求不定積分問題不定積分的小問題

詳細過程如圖rt所示,希望能幫到你解決問題 secx tanx tanx 1 2 sinxd 1 cos 2x 1 2 sinx cos 2x 1 cos 2xdsinx sinx 2cos 2x 1 2 1 1 sin 2x dsinx sinx 2cos 2x 1 2 1 1 sinx 1 1 ...

求不定積分問題,不定積分的小問題

錯了,第二個等號後的式子中間應該為加號 正確過程如圖 其中c為常數 求不定積分問題?1 x 2 3x 2 dx 1 6 d 2 3x 2 2 3x 2 1 3 2 3x 2 c 2 let x tanu dx secu 2 du xarctanx 1 x 2 3 2 dx u.tanu secu 3...