高數問題,函式極限保號性定理的逆定理成立嗎?(在x0某去心鄰域內f x 0,那麼極限A大於0嗎

2021-04-18 16:34:00 字數 5219 閱讀 2998

1樓:匿名使用者

教材上有推論,推論如果在x的某去心鄰域內f(x)≥0(或f(x)≤0),而且limf(x)=a,那麼a大於等於0。

2樓:匿名使用者

成立【如果在x0某去心鄰域內f(x)>0,那麼極限a大於等於0。】

3樓:我只是一粒凡塵

limf(x)=a

x趨於無窮。

由f(x)>0不能推出極限a>0

反例:f(x)=1/x

1/x雖然大於0,但它的極限等於0。

4樓:啃瓜演員

逆定理不成立

1: 函式極限保號性後面說的是推論,並非逆定理。

2:推論成立是有條件的 即在x0的某去心鄰域內 所有的f(x)必須滿足大於0或小於0才能證得f(x)>0,a>0。

好好翻書很重要!!!

5樓:啟迪狗

成立,我抄現證明函式極限保序性定理的逆定理成立。逆定理應為:若在xo的去心鄰域內,fx恆>gx,且fx在xo處極限為a,gx在xo處極限為b,則a>b。證明如下:

設hx等於fx-gx,在xo去心鄰域內hx恆>0,在x趨近xo處fx,gx極限均存在,運用極限運演算法則,hx在xo處極限為a-b,因為hx在xo的去心鄰域內恆>0,所以其在xo處極限必>0,所以a-b>0,a>b

對於最佳答案答主,我想說書中推論成立不能表明沒有寫出的推論不成立,看高數書固然重要,但跳出書本自己尋找答案和新東西也很重要。

6樓:匿名使用者

逆定理不成立,在教材保號定理下面的一段有分析。此處也是考研時容易出題的地方。仔細琢磨吧。

學習數學的感想 600字

7樓:匿名使用者

學習數學的感悟 我國著名數學家華羅庚曾這樣說過:「宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日月之繁,無處不用到數學。」是啊,特別是二十一世紀的今天,數學的應用更是無處不在。

隨著六年的數學學習,我對數學的的熱愛可謂是日增月漲,對數學的感悟也是越來越深了。 在乾隆年間,紀曉嵐就巧妙運用了「數學」來博得乾隆的歡心。乾隆說出了上聯「花甲重逢,增加三七歲月」,什麼意思呢?

中國人以60為一花甲,一個花甲就是60歲,花甲重逢,60×2=120歲,增加三七歲月,三七二十一,120+21正好是141歲。 紀曉嵐馬上對出了下聯「古稀雙慶,更多一度春秋」。我們中國有一句古話「人活七十古來稀」,七十便是古稀之年,古稀雙慶,70×2=140歲,更多一度春秋,也就是140+1=141歲。

再聯絡到今年的上海世博會中的數學,世博會的場館多麼巨集偉壯觀,才華橫溢的建築設計師們需要精確計算建築的高度,寬度,長度,還要計算它的角度,需要運用到幾何等。這如果沒有了數學,能建造出來嗎?數學是神奇的,數學知識是無窮無盡的,數學公式是非常奇妙的,而數學思考題則可以挖掘出我們的智慧。

「數學是科學的皇后」,她的美麗與神祕吸引著很多人在不斷去探索數學的奧妙。數學就像一陣清風吹進了我的心扉,它將引領著我在數學的海洋裡遨遊。 數學中一個個奇妙的數字,那一個個有趣的符號,都是幫助我開啟數學大門的鑰匙。

只有擁有紮實的基礎,才能讓數學之花慢慢開放。口算、遞等式、速算和巧算就像是地基,只有把「地基」建牢固了,才能對數學越來越有興趣;反之,如果「地基」不牢固,久而久之就會對數學產生一種厭惡的心理。在做計算題時,只有細心加上耐心,只有這樣,才能得到百分之百的正確。

因為我曾無數次與數學難題較量,每次我都堅持攻克數學難關,所以我從解數學題中也學到了不少:堅持就是勝利,只有永不言敗、堅持不懈才能迎來成功,在困難中堅持不懈,笑對生活,最終困難就會被折服,成功也就會向你微笑。  數學,就像一座高峰,直插雲霄,剛剛開始攀登時,讓人感覺很輕鬆,但我們爬得越高,山峰就變得越陡,讓人感到恐懼,這時候,只有真正喜愛數學的人才會有勇氣繼續攀登下去,所以,站在數學的高峰上的人,都是發自內心喜歡數學的。

記住,站在峰腳的人是望不到峰頂的。數學是神祕的,同學們,讓我們攜手暢遊在數學的海洋裡,去揭開數學神祕的面紗,共同探索數學的奧妙吧!學習成功得到快樂的情緒體驗是一種巨大的力量,它能使學生產生學好數學的強烈慾望。

要使學生獲得成功,教師必須設計好探索數學知識的臺階,包括設計好課堂提問和動手操作的步驟等,使不同智力水平的同學都能拾級而上,「跳一跳摘果子」,都能獲得經過自己艱苦探索,掌握數學知識後的愉快情緒體驗,從而得到心理上的補償和滿足,激勵他們獲得更多的成功。當學生在探索學習的過程中遇到困難或出現問題時,要適時、有效的幫助和引導學生,使所有的學生都能在數學學習中獲得成功感,樹立自信心,增強克服困難的勇氣和毅力。特別是後進學生容易自暴自棄、洩氣自卑,教師要給予及時的點撥、誘導,如畫出線段圖幫助他們理解應用題、讓他們換句話說說理解題意、舉個例試試等,半扶半放地讓他們自己去走向成功。

、 著名的教育家蘇霍姆林斯基曾說過:「如果教師不想方設法使學生進入情緒高昂和智力振奮的內心狀態,就急於傳授知識,那麼,這種知識只能使人產生冷漠的態度,而不動感情的腦力勞動就會帶來疲倦。」因此,教師在組織教學時,應通過設定各種問題情境,創設各種具有啟發性的外界刺激,引導學生積極思維,激起學生要「弄懂」、「學會數學」知識和技能的慾望。

在教學中設定一些懸念,創造一種特殊的情境,則更能引起學生的共鳴,並使這種共鳴轉化為求知慾,進而把注意轉移到新知識的學習上。

8樓:ak74逆林

數學考試的心得

又一場考試結束了。每次考試都會得到一些教訓或一些經驗,本次考試我得到的最大的啟示是:疏忽總是存在的。

考完數學,感覺挺不錯,卷子很簡單,題題順利,接著又認認真真地檢查了一遍,確定全對之後,心中一直有一個希望:數學考滿分。

離開考場之後,考滿分的希望離我越來越近。我大膽地和同學對答案,題題正確。看到一些同學因為對答案發現錯題而垂頭喪氣、懊惱不已,我心中暗暗的想:

全部做對的感覺就是好,真慶幸我考試時認真做完題目之後,又認真地檢查了一遍,那天那時,我是前所未有的高興。 我覺得學習數學,要以教科書為根據,做到「四個認真」,即:認真預習、認真聽課、認真複習、認真做題。

預習時要做到「五要」:①要用波浪線劃出重點;②要將公式及結論做記號;③要在看不懂、有疑問的地方用鉛筆畫問號;④要將簡單習題的答案、解題要點寫在後面;⑤如果定義、定理中的條件不止一個,就要把條件編上號碼。

認真預習後再去聽課,比不預習要好得多。聽課後,在做習題前,還要進行復習,檢查書上還有哪些文字看不懂,要認真想,都想明白了,再開始做題。通過做題,可以對學過的知識加深記憶。

9樓:達美媛厚雨

數學的學習是一個積累

和運用的過程,因此,學好數學的一個必要前提便是要注重平時的積累和運用。而在日常時對於數學的學習還是有許多方法的。

學習數學,重要的是理解,而不是像其它科目一樣死背下來.數學有一個特點,那就是"舉一反三」.做會了一道題目,就可以總結這道題目所包含的方法和原理,再用總結的原理去解決這類題,收效就會更好.

學習數學還有一點很重要,那就是從基本的下手,穩穩當當的去練,不求全部題都會做,只求做過的題不會忘,會用就行了.在做題的過程中,最忌諱的就是粗心大意.往往一道題目會做,卻因粗心做錯了,是很不值得的.

所以在考數學的時候,一定不要太急,要條理清楚的去計算,思考;這樣速度可能會稍慢,但卻可以使你不丟分.相比之下,我會採取稍慢的計算方法來全面分析題目,儘量做到不漏.學習是一生的事情,不要過於著急,一步一個腳印的來,就一定會取得一想不到的效果.

我一直認為數學不是靠做題做出來的.方法永遠比單純做題更重要.在第二天講課前,最好先預習一下.

用筆劃出不懂的地方.在老師講課時認真聽講,並在原先預習時不懂的地方加以解釋,寫好步驟.在課上,有選擇的聽和記老師所講的例題.

首先要聽懂,然後再記下些重要的步驟和方法以及易錯的地方和自己不容易想到的地方.還有,重要的定理和結論一定要熟記.課後要善於總結本堂課的內容,並在腦中梳理自己不懂的但經老師講後才明白的例題的步驟,梳理1至2遍.

課後要按時完成作業.一般先看老師鉤的題目,看完後再自己動手做一遍.至於那些老師沒有鉤的題目,可選擇性的做一些.

若想的時間太久,就需要"放棄"了.

數學學習做題是極為必要的,因此做題之後的總結工作也是極為重要的,否則只能是雜而不精,無法將知識融會貫通,合理運用。總結工作具體而言我們可以這樣做:一,常備改錯本,將自己做錯的題目摘錄下來,並將自己的錯誤做法和正確的作法一同記錄下來,,以此警惕自己;二,正確把握考點,抓好典型,以此舉一反三,我們在做題的過程中應該對題目考察的知識點有一定的認識,不可盲目做題,在此過程中我們可以提取一些具有某知識點的典型考法的題目,將其擬於一個標題之下記錄,以此不變而應萬變;三,對於許多學有餘力的同學而言,僅有以上兩點,想要得到進一步的提高還是遠遠不夠的,我們還需要對解題方法有一個思辯的理解,從許許多多的解法中選取適於自己的解題方式,而對於一些靈活的題目而言,我們還應該在做題中對許許多多的情況進行總結,以便在考試中將方法靈活運用,防止死做與定性思維的產生。

學習數學有什麼意義???請問

10樓:海風教育

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

複習筆記

初中數學寶典----複習

很多的學生在剛開始的時候學習這們課程不費勁但是往後可能會學的非常吃力,其實這就是因為在學習後邊的內容時將之前的內容忘掉了,所以會導致學習比較吃力,所以現在就需要用到我們的初中數學寶典--複習.

在數學的複習上,我們一定要去研究解題的思路和解題的步驟,這樣我們的成績才會提高,數學試題無論如何變化都離不開最為基本的理論,因此我們要在自己的腦海中建立一個數學的知識樹.

我們在複習數學的時候,一定要對基礎的知識進行整理和回顧,數學是一個階梯式的課程,因此我們要建立起一個數學的知識樹,我們要先在大腦中設想這棵知識樹,然後找出自己的不足所在,在進行針對性的回顧,對於那寫容易搞混的知識點,要進行梳理並且做到完全的區分,最重要的一點是,我們應該多層次的去分析問題,舉一反三,將重點放在我們的解題思路上.

數學的複習,要秉承一個原則,那就是小題突破大題穩定,我們不可能在大題上做到突破但是在小題上可以做到這一點,有意識的練習自己選擇題和填空題的答題速度,當然速度是在正確的情況下,這樣會給下面的試題留下很多的思考時間,使用各種方法來進行解答.

在數學的複習上,我們一定要去研究解題的思路和解題的步驟,這樣我們的成績才會提高,數學試題無論如何變化都離不開最為基本的理論,因此在腦海中建立一個數學的知識樹是非常必要的,這可以更快速的幫助自己解題.

複習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先複習一下之前的內容,當然這個時候之前記得筆記就可以用來複習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

p37定理高數中關於函式極限的保號性證明的問題。如圖為什麼

要明白,這裡不是為了驗證這個函式有沒有極限,在這裡,已經實事先設定函式是有極限的。現在是在有極限的情況下,證明區域性保號。所謂區域性保號,是說如果極限點的極限不是0的話,說在極限點附近的某個小區域 區域性 內,符號和極限點的極限符號相同。所以我們只要找到這樣一個區域性,就證明了這個定理了。至於除了這...

高數函式極限問題,大學高數函式極限問題

這兩個都是錯誤的,從影象中可看出函式的定義域是 1,1 x在1的左側沒定義,當然不可能從1的左側趨近1了 同樣,x在2的左右兩側均沒定義,更談不上極限了。大學高數函式極限問題 選a 這是關於 函式極限與數列極限關係的題目是定理 如果lim x x0 f x 存在,內xn 為函式f x 的定義容域內任...

高數,保號性定理,如何理解,求大神解答

保號性 若有 lim n xn a,a 0,則存在n 0,使當n n時,有xn 0 小於零的情況類似 這個定理其實很容易去理解的,因為它說明了一個理所當然的事實 一數列極限存在,且極限嚴格大於零,那麼這個數列去掉前面有限多項之後,剩下的項都會大於零 保號就體現在對符號的保證 而至於這個有限多究竟是多...