1樓:
你好:圓的標準方程是(x-a)^2+(y-b),其中圓心座標是a(a,b),半徑是r
2樓:匿名使用者
a平方+b平方=y
圓心座標(0,0)
半徑根號y
3樓:囬到過去
(x+a)²+(y+b)²=r²
圓心(-a,-b)半徑r
4樓:昊宸寧月
方程:(x-a)^2+(y-b)^2=r^2 記得不是很清楚圓心:(a,b)
半徑:r
順便給一下一般方程:x^2+y^2+cx+dy+e=0
圓的圓心座標公式和半徑公式分別是什麼
5樓:匿名使用者
圓在標準方程式下的圓心座標為:(a,b),半徑公式為:r=√[(x-a)^2+(y-b)^2]。
圓在一般方程式下的圓心座標為:(-d/2,-e/2),半徑公式為:r=√[(d^2+e^2-4f)]/2。
標準方程
圓的標準方程為:(x-a)^2+(y-b)^2=r^2 ,其中a和b分別是平面座標系中分別距離y軸和x軸的距離,也是圓的圓心座標。r為半徑。
x和y值代表任意一個座標點,但要滿足x-a>0和y-b>0。由此根據勾股定理可得:
圓半徑公式r=√[(x-a)^2+(y-b)^2]。
圓心座標為(a,b)。
圓的一般方程
圓的一般方程為:x^2+y^2+dx+ey+f=0 ,配方可化為標準方程:(x+d/2)^2+(y+e/2)^2=(d^2+e^2-4f)/4 。
由圓的標準方程可知,x+d/2>0和y+e/2>0。同時,
(d^2+e^2-4f)/4>0。由此可得:
圓心座標:(-d/2,-e/2) 。
圓半徑公式r=√[(d^2+e^2-4f)]/2。
圓的直徑:d^2+e^2-4f。
圓的面積公式:s = π×r^2 。
圓周長計算公式:l = 2×π×r。
6樓:匿名使用者
^對於圓的標準方程(x-a)^2+(y-b)^2=r^2圓心座標為(a,b),半徑為r
對於圓的一般方程x^2+y^2+dx+ey+f=0可以通過配方轉化為標準方程:
x^2+dx+d^2/4+y^2+ey+e^2/4=(d^2+e^2-4f)/4
(x+d/2)^2+(y+e/2)^2=(d^2+e^2-4f)/4圓心座標為(-d/2,-e/2),半徑為1/2√(d^2+e^2-4f)
其中d^2+e^2-4f>0
7樓:匿名使用者
圓的方程(x-a)^2+(y-b)^2=r^2
圓心座標(a,b)半徑r
8樓:匿名使用者
(x-a)平方+(y-b)平方=r平方
圓心座標 a b半徑r
圓的標準方程是多少? 還有計算圓心。
9樓:小麥芽芽兒
圓的標準方程中(x-a)²+(y-b)²=r²中x²+y²=1
,圓心o(0,0)被稱為1單位圓
x²+y²=r²,圓心o(0,0),半徑r;
(x-a)²+(y-b)²=r²,圓心o(a,b),半徑r。
10樓:臺瑪開若山
標準圓方程:﹙x-3﹚²+﹙y+1﹚²=4²=16
圓的標準式方程,還有怎麼從中得到圓的半徑與圓心座標
11樓:
圓的標準式方程為
(x-a)²+(y-b)²=r²
半徑為r,
圓心座標為(a,b)
12樓:匿名使用者
x²+y²+dx+ey+f=0
圓心是(-d/2,-e/2)
半徑是:根號(d²+e²-4f)/2
13樓:摯愛和你共亨
(x一a)^2十(y一b)^2=r^2,圓心座標(a,b),半徑為r
14樓:通恨蕊稽晴
首先,求出直線的斜率
由圓和直線相切可知
圓心和切點連成的直線(以下記作l)與已知直線垂直根據直線垂直的條件,可得l的斜率k
於是l的方程:
y=kx+b
又l經過切點,把切點座標代入上式,可得b,即得l的方程圓心和切點的距離等於半徑
切點已知,l的方程已知
設圓心的座標為(x,y)
(1)圓心在直線l上,因此座標滿足l的方程;
(2)圓心和切點的距離等於半徑,用兩點間的距離公式,(1)(2)兩個方程,兩個未知數,聯立,可解這個二元二次方程組求得x,y,即圓心座標
注意會有兩個值
圓的極座標方程是什麼誰知道圓的極座標方程的公式
在極座標系中,圓心在 r0,半徑為a的圓的一般方程為 推導 設圓的半徑為r,圓心的極座標為 p0,並變換為直角座標 p0cos p0sin 則圓上的點的直角座標系方程為 設圓上的點的極座標為 則x pcos x psin 因此 化簡為 一般我平時見到的圓的 方程是指在平面直角座標下的圓的方程 除了平...
怎麼求圓和直線的極座標方程,怎麼求圓和直線的極座標方程我要哭了,數
1.首先在圓上選取一點a p,然後建立關係式 構造rt三角形,利用三角函式 因為內有 這個東東容作怪 cos 4分之派 p 2 p 2 cos 4分之派 2.還是用rt三角形 三角函式,設點a p,在直線上cos 1 p p 1 cos 不等於2分之派 這類題主要是運用rt三角形中的銳角三角函式 5...
橢圓的標準方程,橢圓的標準方程是什麼?
橢圓的標準方程共分兩種情況 當焦點在x軸時,橢圓的標準方程是 x a y b 1,a b 0 當焦點在y軸時,橢圓的標準方程是 y a x b 1,a b 0 其中a c b 推導 pf1 pf2 f1f2 p為橢圓上的點 f為焦點 不論焦點在x軸還是y軸,橢圓始終關於x y 原點對稱。頂點 焦點在...