1樓:匿名使用者
y=x^(8/3)-x^(5/3)
y'=(8/3)x^(5/3)-(5/3)x^(2/3)y''=(40/9)x^(2/3)-(10/9)x^(-1/3)另y''=0
x=1/4
而y'''>0
所以有一個拐點
有幾個拐點 根據導數的影象判斷
2樓:匿名使用者
有五個拐點,拐點是曲線斜率由增加變減少,或由減少變增加的轉折點 。一二之間一個 、二三之間一個、三四之間一個、四五之間一個 、六是一個。共五個 謝謝。
3樓:葛成成
拐點的性質是凹凸性不同,若直接給出二階影象,判斷凹凸性即可,本題有6個拐點。若給出一介導數影象,需判斷左右是否異號,若異號,則這個點是拐點。
4樓:超級粑粑人耶
根據你的影象,我只能看出5個拐點
5樓:happy安詳
使一階導函式增減性發生變化的點為拐點,圖中有6個
6樓:保時捷
點是使切線穿越曲線的點(即曲線的凹凸分界點),所以6個
7樓:吉祿學閣
拐點是影象凸凹性發生轉換的點。
8樓:溫
就一個拐點,凹凸線交點,(6,0)
求函式的拐點是不是就是求一階導數函式的極值點?
9樓:匿名使用者
不是。拐點:連續曲線的凹弧與凸弧的分界點,拐點處的二階導函式值為0。說明拐點的兩側必須是一個凹弧、一個凸弧。
而二階導函式的符號可以判定函式的凹凸弧,所以首先必須求出函式的二階導函式;
接著求出二階導函式值為0的所有點;
再判斷這些點左右的二階導函式值的符號,如果左右符號相反,則該點是拐點。否則,不是。
10樓:路易十一
答非所問,一階導數的極值點與二階導數有關,上面那個回答理解錯題目了,拐點就是一階導數的極值點或者不可導點
11樓:赤龍盤踞於巔
是的,在一階導函式連續的情況下,一階導函式的極值點就是原函式的拐點,其實很好理解,拐點是一階導單調性發生變化的那個點,自然也是一階導函式的極值點了。至於樓上那位「數學之美」說不是的,題主問的是「一階導函式」的極值點,不是原函式的極值點,所以強調拐點不一定是原函式極值點與題主問題無關,所答非所問。。還是個認證團隊,題都不好好看。
而那位「數學輔導團」闡述拐點和函式的定義不知意義何在。。直接回答題主一階導極值點是不是原函式拐點不就完了?說一通定義還是讓題主雲裡霧裡的。。
不知道怎麼選上最佳回答的。。這兩個認證團隊需要檢查一下內部成員了。
求函式y=(x-1)*(x-2)^2* (x-3)^3*(x-4)^4的拐點,求詳細解題方法。我使用對數法求了兩次導數,感覺很牽強
12樓:匿名使用者
樓主你好,這是一道選擇題,如果用各位的解題方法考研就要悲劇了,這個題很簡單,這個函式圖象很容易大致畫出來,看圖就可以了,我用系統自帶的畫圖軟體畫一張附上,要是看不到樓主你留個郵箱,我發給你。數學一140+飄過
首先,說說圖是怎麼畫的,這種冪相乘連續函式,一筆就可以畫完,在數軸上找到0點,有1,2,3,4,四個點,取x趨向無窮大時,顯然y是無窮大,所以由x=4的右方開始畫,x=1,2,3,4時,y=0,所以用光滑曲線向點(4,0)畫,不穿過(因為x-4是4次冪,領域內符號相同,且對稱)如圖示,同理,遇偶數冪不穿過,遇到奇數冪則穿過(x-3是奇數冪,領域符號不同大小相同),注意畫圖時儘量畫光滑,為第二步做準備,我用滑鼠畫的,畫的不好,你可以用筆畫
第二部,看圖做題即可,拐點就是凹凸不同的分隔點,顯然圖中的偶點是不可能的,因為左右對稱,領域內凹凸性肯定一樣,再觀察圖形顯然x=3是拐點
就這麼簡單,這個題我一分鐘都沒用就搞定了,數學想拿高分小題很重要,做小題很有技的,希望樓主加油,有什麼疑問可以繼續問我
補充回答:你好, hkrichest, 一個題出成選擇題自有出城小題的道理,這個題出成大題有意義嗎?求幾次導數而已,大題是不會這樣出的,求導誰不會啊,計算量而已,我相信樓主不是要你告訴他怎麼一步一步求導,關於你寫的這兩個,第一個x=-2是拐點,第二個是x=b,有問題嗎?
如果想考高分,就應該什麼樣的題用什麼樣的方法,用大題的方法做小題,是不合適的(當然,如果只有一個途徑除外),考研分數又怎麼上去呢?謝謝,僅作討論,不傷和氣
13樓:匿名使用者
求函式y=(x-1)*(x-2)^2* (x-3)^3*(x-4)^4的拐點,詳細解題方法。可以上知乎上查詢知乎上都是大專家。
14樓:匿名使用者
^y(x)=(x-1)*(x-2)^2* (x-3)^3*(x-4)^4
函式的二階導數為零,且三階導數不為零時,這點即為函式的拐點
考慮(x-3)^3
設p(x)=(x-1)*(x-2)^2*(x-4)^4
y(x)=[(x-3)^3]*p(x)
y'(x)=3(x-3)^2*p(x)+[(x-3)^3]*p'(x)
y"(x)=6(x-3)p(x)+3(x-3)^2*p'(x)+'; y"(3)=0
y"'(x)=6p(x)+6(x-3)p'(x)+[3(x-3)^2*p'(x)]'+",y"'(3)=6p(3)不為零
x=3即為函式的拐點
考慮(x-4)^4
w(x)=(x-4)^4
w'(x)=4(x-4)^3
w"(x)=12(x-4)^2, w"(4)=0
w"'(x)=24(x-4), w"'(4)=0, x=4 不為函式的拐點
15樓:匿名使用者
首先要說xuke1123的是,樓主出的是一個解答題,注意是解答題(要有詳細解答步驟那種),樓主想知道一個詳細的比較好的解題方法。而不是投機取巧的「巧妙方法」。這類書上或試卷上是選擇題如果遇到它以解答題出現如何做?
顯然xuke1123,不能做死題,妙解只是針對特殊性題,順便說一下,你給的圖形絕對有問題,這是一個10次多項式。
樓主的初衷,要的是方法,題目換成x(x-5)^2(x+2)^3(x-7)^4或者x^2(x-a)^2(x-b)^3(x-c)^4呢?
最容易理解的方法:
令a=x-1,b=(x-2)^2,c=(x-3)^3,d=(x-4)^4
a'=1,a''=0,a'''=0
b'=2(x-2),b''=2,b'''=0
c'=3(x-3)^2,c''=6(x-3),c'''=6
d'=4(x-4)^3,d''=12(x-4)^2,d'''=24(x-4)
y=abcd
y'=a'bcd+ab'cd+abc'd+abcd'
y''=a''bcd+a'b'cd+a'bc'd+a'bcd'
+a'b'cd+ab''cd+ab'c'd+ab'cd'
+a'bc'd+ab'c'd+abc''d+abc'd'
+a'bcd'+ab'cd'+abc'd'+abcd''
c,c',c''的公因子是(x-3)
d,d',d''的公因子是(x-4)^2
所以得到y''的16項都含有(x-3)(x-4)^2,這16項都是8次單項式(y10次,y'9次,y''8次)
不妨令y''=(x-3)(x-4)^2g(x),其中g(x)為關於x的5次多項式
(設g(x)為關於x的5次多項式,y''=(x-3)(x-4)^2g(x)也可,此處能理解便可)
y''=0=>x=3或x=4
y'''=[(x-3)(x-4)^2g(x)]'
=(x-4)^2g(x)+2(x-3)(x-4)g(x)+(x-3)(x-4)^2g'(x)
=(x-4)[(x-4)g(x)+2(x-3)g(x)+(x-3)(x-4)g'(x)]
=0=>x=4
求函式y=(x-1)*(x-2)^2* (x-3)^3*(x-4)^4的拐點,即使函式二階導數為零,且三階導數不為零的x的值,為x=3。
有疑問可以問我
16樓:匿名使用者
對數求導後通分合並同類項
然後只考慮分子
其中一個點x=5/3
對分子再求導並求極值點使分母為零的點只能通過定義來判斷
17樓:_雨睿
首先,大致畫出圖形,這
個圖形很容易畫,四個零點,x=1,2,3,4。分段確定大致圖形的位置,x<1的時候,y>0,且這一區段為減函式,故沒有拐點。10,y的增減與最後兩項有關,令y3= (x-3)^3*(x-4)^4,一次求導使得y4'=0可得拐點為x4=24/7;最後因為x>4時y>0,30,故x5=4為最後一個拐點。
五個拐點為:
x1=5/3;
x2=2;
x3=12/5;
x4=24/7;
x5=4。
另外,附上自己畫的草圖:
18樓:匿名使用者
一般的,設y=f(x)在區間i上連續,x0是i的內點(除端點外的i內的點)。如果曲線y=f(x)在經過點(x0,f(x0))時,曲線的凹凸性改變了,那麼就稱點(x0,f(x0))為這曲線的拐點。
當函式影象上的某點使(((函式的二階導數為零,且三階導數不為零時))),這點即為函式的拐點
看看定義 函式的二階導數為零,且三階導數不為零時先求導 2次 得 y''=0 的解再求導 3次 排除 y'''=0 的解
剩下的解就是啦 那個 熱心網友 的 答案應該就是了
19樓:匿名使用者
將y=(x-1)*(x-2)^2*(x-3)^3*(x-4)^4對x求2階導數,然後令導函式為0求出x,然後判斷這些點左側和右側函式值的變化趨勢,分析出拐點。
20樓:匿名使用者
就是這樣做的 再不會就是人品問題 哈哈
21樓:冥炎之殤
高中函式求導有一個「穿針引線法」
函式的拐點就是導數值等於零
f『(x)=24(x-4)^3*(x-3)^2*(x-2)於是乎···
當x=2 3 4 時候····
22樓:無敵da寧哥
高次函式有個奇穿偶折的原則,就是當某個零點的根對應的多項式的指數是奇數的話,函式就折過去,偶數的話就穿過去,所以拐點是2、4。另附一張草圖吧!
23樓:
用matlab算吧。
24樓:匿名使用者
至少2,3,4是拐點
25樓:匿名使用者
只能通過函式程式設計來求了
由一階導數影象如何判斷極值點和拐點個數?
26樓:緘默鈴鐺
從導數影象可知,導函式f′(x)有3個零點,且a,b2個零點左右兩側導數值均變號,則說明函式f(x)有2個極值點.
導函式f′(x)在b、c中間最高處、c點兩個地方取得極值,即這兩點處二階導數f″(x)為0,且在bc中間最高點左側導函式斜率大於0,右側導函式斜率小於0,所以bc中間最高點為拐點;c點左側導函式斜率小於0,右側導函式斜率大於0,所以c點也為拐點.
拐點還可能出現在不可導點,即虛線處那點的情況:從圖中可知,左側二階導數f″(x)小於0,右側二階導數f″(x)大於0,故虛線處也是拐點.
綜上所述,函式f(x)有2個極值點,3個拐點.故答案選:b.
全部手打的,望採納!!
27樓:happy安詳
這是2023年數二選擇題,樓上答的很對
求函式的導數詳細過程,求函式的導數,麻煩寫個詳細點的過程
這高等數學導數問題可以根據課本中常見的函式的導函式求導公式對其進行合理變形使用解題。從第3小題到第10小題 求函式的導數,麻煩寫個詳細點的過程 先對dux 2求導,為2x 再對x 3secx求導 這是兩個zhi相乘的求導。先dao 求第一個x 3的導 為3x 2 然後,用回3x 2乘secx 這個為...
怎麼求原函式的導數,如何求一個導數的原函式?
被積函式的不定積分稱為被積函式的原函式,而原函式的導數就是這個被積函式。原函式的導數等於被積函式。求原函式的導數不就是普通函式求導麼?你這裡的原函式有啥特殊的?導數有公式 對著公式寫咯 如何求一個導數的原函式?求一個導數的原函式使用積分,積分 是微分的逆運算,即知道了函式的導函式,反求原函式。積分求...
如何求函式的n階導數,求一個函式的n階導數有沒有什麼好的方法
y 2sinxcosx sin2x y 2cos2x y 4sin2x y 4 8cos2x 一般地,y n 2 n 1 sin 2x n 1 兀 2 例如 y lnx x y 1 lnx x 2 1 x 2 lnx x 2 y 2 x 3 1 2lnx x 3 3 x 3 2lnx x 3 記y ...