1樓:興壞
需要,書上沒有這個定理。簡單寫一下因為對角互補所以兩個角的圓心角和為360度,那就是共圓啊。即使不證明也扣不了幾分的,頂多2分吧,
對角互補的四邊形如何證明四點共圓?(中考能用)
2樓:關鍵他是我孫子
用切割線定理證明:
圓內接四邊形的對角和為180°,並且任何一個外角都等於它的內對角。
如四邊形abcd內接於圓o,延長ab和dc交至e,過點e作圓o的切線ef,ac、bd交於p,則a+c=π,b+d=π,
角dbc=角dac(同弧所對的圓周角相等)角cbe=角ade(外角等於內對角)
△abp∽△dcp(三個內角對應相等)
ap*cp=bp*dp(相交弦定理)
eb*ea=ec*ed(割線定理)
ef*ef= eb*ea=ec*ed(切割線定理)(切割線定理,割線定理,相交弦定理統稱圓冪定理)ab*cd+ad*cb=ac*bd(托勒密定理ptolemy)
3樓:ii康康大人
可以用反證法來證明四點共圓。過a,b,d作圓o(三點肯定可以做圓),假設c不在圓o上,而c在圓外或圓內。
若c在圓外,設bc交圓o於c』,連結dc』做一線段,根據圓內接四邊形的性質得∠a+∠dc』b=180°,又因為∠a+∠c=180°∴∠dc』b=∠c 這與三角形外角定理矛盾,故c不可能在圓外。類似地可證c不可能在圓內。 所以c在圓o上,也即a,b,c,d四點共圓。
擴充套件資料:
四點共圓判定與性質:
四邊形abcd內接於圓o,延長ab和dc交至e,過點e作圓o的切線ef,ac、bd交於p,則有:
(1)∠a+∠c=π,∠b+∠d=π(即圖中∠dab+∠dcb=π, ∠abc+∠adc=π)
(2)∠dbc=∠dac(同弧所對的圓周角相等)。
(3)∠ade=∠cbe(外角等於內對角,可通過(1)、(2)得到)
(4)△abp∽△dcp(兩三角形三個內角對應相等,可由(2)得到)
(5)ap*cp=bp*dp(相交弦定理)
(6)eb*ea=ec*ed(割線定理)
(7)ef²= eb*ea=ec*ed(切割線定理)
(8)ab*cd+ad*cb=ac*bd(托勒密定理)
說明:切割線定理,割線定理,相交弦定理統稱圓冪定理。
其他定理:弦切角定理:弦切角的度數等於它所夾的弧的圓心角的度數的一半。
4樓:匿名使用者
具體證明步驟如下:
【證明】
首先證∠a+∠c=180
如圖所示,連線do, bo. 設∠bod為360°-θ∵圓周角等於所對的圓心角的一半
∴∠c=1/2∠bod,
同理,∠a=1/2θ
∴∠a+∠c=1/2*360=180,即兩角互補。
同理可證∠abc+∠adc=180.所以對角互補。
證畢依據:
①圓周角等於圓心角一半
②圓周角等於360°
拓展資料:內接四邊形對角互補(inscribed quadrilateral diagonal supplementary)是指圓的內接四邊形的對角互補,特點是任意一個外角等於它的內對角。
內接四邊形對角互補:圓的內接四邊形的對角互補,並且任意一個外角等於它的內對角
四個點在圓上四邊形是圓的內接四邊形.圓內接四邊形對角互補,外角等於它的內對角
5樓:匿名使用者
已知:四邊形abcd中,∠a+∠c=180°求證:四邊形abcd內接於一個圓(a,b,c,d四點共圓)證明:用反證法
過a,b,d作圓o,假設c不在圓o上,剛c在圓外或圓內,若c在圓外,設bc交圓o於c』,連結dc』,根據圓內接四邊形的性質得∠a+∠dc』b=180°,
∵∠a+∠c=180°∴∠dc』b=∠c
這與三角形外角定理矛盾,故c不可能在圓外。類似地可證c不可能在圓內。
∴c在圓o上,也即a,b,c,d四點共圓。
如果同一平面內的四個點在同一個圓上,則稱這四個點共圓,一般簡稱為"四點共圓"。四點共圓有三個性質:(1)共圓的四個點所連成同側共底的兩個三角形的頂角相等;(2)圓內接四邊形的對角互補;(3)圓內接四邊形的外角等於內對角。
以上性質可以根據圓周角等於它所對弧的度數的一半進行證明。
6樓:汪洋
證明四點共圓有下述一些基本方法:
方法1 從被證共圓的四點中先選出三點作一圓,然
後證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓.
方法2 把被證共圓的四點連成共底邊的兩個三角形,若能證明其兩頂角為直角,從而即可肯定這四個點共圓.
方法3 把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等,從而即可肯定這四點共圓.
方法4 把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其一個外角等於其鄰補角的內對角時,即可肯定這四點共圓.
方法5 把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓;或把被證共圓的四點兩兩連結並延長相交的兩線段,若能證明自交點至一線段兩個端點所成的兩線段之積等於自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓.
方法6 證被證共圓的點到某一定點的距離都相等,從而確定它們共圓.
(1)證明對角互補
(2)證明一個外角等於其內對角
(3)證明這四點到一點距離相等
(4)證明某一條邊對同側兩點的張角相等(就是圓周角定理的逆定理)
(5)相交弦定理逆定理(割線定理逆定理)
(6)托勒密定理逆定理
上述六種基本方法中的每一種的根據,就是產生四點共圓的一種原因,因此當要求證四點共圓的問題時,首先就要根據命題的條件,並結合圖形的特點,在這六種基本方法中選擇一種證法,給予證明.
7樓:匿名使用者
四點兩兩連結並延長相交的兩線段,形成兩個三角形,而且是相似的三角形。根據相似三角形的比例規則,若能證明自交點至一線段兩個端點所成的兩線段之積等於自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓.
對角互補的四邊形,四點共圓,我要這個方法的證明,有沒有
8樓:匿名使用者
證明:用反證法
過a,b,d作圓o,假設c不在圓o上,剛c在圓外或圓內,若c在圓外,設bc交圓o於c』,連結dc』,根據圓內接四邊形的性質得∠a+∠dc』b=180°,
∵∠a+∠c=180°∴∠dc』b=∠c
這與三角形外角定理矛盾,故c不可能在圓外。類似地可證c不可能在圓內。
∴c在圓o上,也即a,b,c,d四點共圓。
9樓:匿名使用者
過其中三點做圓,再用反證法證明。
對角互補的四邊形四點共圓的理論能直接用嗎
10樓:匿名使用者
四邊形對角互補,那麼四邊形的4個頂點共圓,這本身就是定理,當然能使用
對角互補的四邊形如何證明四點共圓?
11樓:匿名使用者
已知:四邊形abcd中,∠a+∠c=180°求證:四邊形abcd內接於一個圓(a,b,c,d四點共圓)證明:用反證法
過a,b,d作圓o,假設c不在圓o上,剛c在圓外或圓內,若c在圓外,設bc交圓o於c』,連結dc』,根據圓內接四邊形的性質得∠a+∠dc』b=180°,
∵∠a+∠c=180°∴∠dc』b=∠c
這與三角形外角定理矛盾,故c不可能在圓外。類似地可證c不可能在圓內。
∴c在圓o上,也即a,b,c,d四點共圓。
12樓:汪洋
證明四點共圓有下述一些基本方法:
方法1 從被證共圓的四點中先選出三點作一圓,然後證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓.
方法2 把被證共圓的四點連成共底邊的兩個三角形,若能證明其兩頂角為直角,從而即可肯定這四個點共圓.
方法3 把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等,從而即可肯定這四點共圓.
方法4 把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其一個外角等於其鄰補角的內對角時,即可肯定這四點共圓.
方法5 把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓;或把被證共圓的四點兩兩連結並延長相交的兩線段,若能證明自交點至一線段兩個端點所成的兩線段之積等於自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓.
方法6 證被證共圓的點到某一定點的距離都相等,從而確定它們共圓.
(1)證明對角互補
(2)證明一個外角等於其內對角
(3)證明這四點到一點距離相等
(4)證明某一條邊對同側兩點的張角相等(就是圓周角定理的逆定理)
(5)相交弦定理逆定理(割線定理逆定理)
(6)托勒密定理逆定理
上述六種基本方法中的每一種的根據,就是產生四點共圓的一種原因,因此當要求證四點共圓的問題時,首先就要根據命題的條件,並結合圖形的特點,在這六種基本方法中選擇一種證法,給予證明.
請問如何證明四點共圓,證明了四點共圓之後可以得出什麼結論,求教!急,明天早上考數學!
13樓:溫寵
四點共圓 證明四點共圓的基本方法證明四點共圓有
下述一些基本方法:方法1 從被證共圓的四點中先選出三點作一圓,然後證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓。方法2 把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等(同弧所對的圓周角相等),從而即可肯定這四點共圓. (若能證明其兩頂角為直角,即可肯定這四個點共圓,且斜邊上兩點連線為該圓直徑。
)方法3 把被證共圓的四點連成四邊形,若能證明其對角互補或能證明其一個外角等於其鄰補角的內對角時,即可肯定這四點共圓。方法4 把被證共圓的四點兩兩連成相交的兩條線段,若能證明它們各自被交點分成的兩線段之積相等,即可肯定這四點共圓(根據相交弦定理 的逆定理);或把被證共圓的四點兩兩連結並延長相交的兩線段,若能證明自交點至一線段兩個端點所成的兩線段之積等於自交點至另一線段兩端點所成的兩線段之積,即可肯定這四點也共圓。(根據托勒密定理的逆定理)方法5 證被證共圓的點到某一定點的距離都相等,從而確定它們共圓.既連成的四邊形三邊中垂線有交點,即可肯定這四點共圓.上述五種基本方法中的每一種的根據,就是產生四點共圓的一種原因,因此當要求證四點共圓的問題時,首先就要根據命題的條件,並結合圖形的特點,在這五種基本方法中選擇一種證法,給予證明. 判定與性質:
圓內接四邊形的對角和為180°,並且任何一個外角都等於它的內對角。 如四邊形abcd內接於圓o,延長ab和dc交至e,過點e作圓o的切線ef,ac、bd交於p,則a+c=π,b+d=π, 角dbc=角dac(同弧所對的圓周角相等)。 角cbe=角ade(外角等於內對角) △abp∽△dcp(三個內角對應相等)ap*cp=bp*dp(相交弦定理)eb*ea=ec*ed(割線定理)ef*ef= eb*ea=ec*ed(切割線定理)(切割線定理,割線定理,相交弦定理統稱圓冪定理)ab*cd+ad*cb=ac*bd(托勒密定理ptolemy)弦切角定理方法6同斜邊的兩個rt三角形的四個頂點共圓,其斜邊為圓的直徑。
怎樣證明兩組對邊分別相等的四邊形是平行四邊形
課本上有步驟 而且這是個定理 兩組對邊分別相等的四邊形是平行四邊形 要麼證明相等的對邊同時平行 要不就證明另外一組對邊相等 切記一組對邊平行另組對邊相等是證不出平行四邊行的 兩組對邊分別相等的四邊形是平行四邊形嗎 設在四邊形abcd中,內ab cd,ad bc,求證四邊形abcd是平行容四邊形。證明...
對角線互相平分的四邊形是平行四邊形嗎
對角線互相平分的四 邊形是平行四邊形。證明 假設四邊形abcd,對角線ac bd相交於點o,且oa oc,ob od,則四邊形abcd是平行四邊形。在 aod和 cob中,oa oc aod cob od ob aod cob sas ad cb,1 2 ad cb 四邊形abcd是平行四邊形 此問...
平行四邊形的兩條對角線把平行四邊形分成面積相等的小三角形。這個真命題怎麼證明
首先,要知道這源個問題 在 abc中,ad是中線,ah是高。因為s abd bd ah 2,s adc dc ah 2,而bd dc 所以s abd s adc 那麼在平行四邊形abcd中,對角線ac和bd相交於點o,因為ao oc,bo od,所以,s aob s aod s doc s cob ...