1樓:匿名使用者
解:(i)證明:∵an+2=3an+1-2an,∴an+2-an+1=2(an+1-an),∵a1=1,a2=3,
∴ an+2-an+1an+1-an=2(n∈n*).∴是以a2-a1=2為首項,2為公比的等比數列.(ii)解:由(i)得an+1-an=2n(n∈n*),∴an=(an-an-1)+(an-1-an-2)++(a2-a1)+a1
=2n-1+2n-2++2+1
=2n-1(n∈n*).
(iii)證明:∵4b1-14b2-14bn-1=(an+1)bn,∴4b1+b2+…+bn=2nbn
∴2[(b1+b2+…+bn)-n]=nbn,①2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1.②
②-①,得2(bn+1-1)=(n+1)bn+1-nbn,即(n-1)bn+1-nbn+2=0.③
nbn+2-(n+1)bn+1+2=0.④④-③,得nbn+2-2nbn+1+nbn=0,即bn+2-2bn+1+bn=0,∴bn+2-bn+1=bn+1-bn(n∈n*),
∴是等差數列.
2樓:匿名使用者
1. 因:a(n+2)=3a(n+1)-2ana(n+2)=a(n+1)+2a(n+1)-2ana(n+2)-a(n+1)=2a(n+1)-2ana(n+2)-a(n+1)=2[a(n+1)-an][ a(n+2)-a(n+1)]/[a(n+1)-an]=2所以:
數列 a(n+1)-an是等比數列。
2.因:a(n+2)=3a(n+1)-2an所以:a(n+2)-a(n+1)=2[a(n+1)-an]即有:a2-a1=3-1=2
a3-a2=2[a2-a1]=2x2=4=2
已知數列an滿足a1 1,an 1 an 1,數列bn的前n項和為sn,且sn bn
解 1.a n 1 an 1,為定值,又a1 1,數列是以1為首項,1為公差的等差數列。an 1 n 1 n n 1時,s1 b1 2b1 2 b1 1 n 2時,sn 2 bn s n 1 2 b n 1 bn sn s n 1 2 bn 2 b n 1 2bn b n 1 bn b n 1 1 ...
已知數列an滿足a1 1 4,an a n 11 n a n 1 2 n 2,n小於等於N
1 an a n 1 1 n a n 1 2 1 n an.a n 1 2an a n 1 1 n 2 a n 1 1 an 2 1 an 1 1 n 1 1 an 1 n 1 an 1 n 1 an 1 1 n 1 2 1 an 1 n 1 a1 1 2 n 1 1 an 1 n 3 2 n 1 ...
已知數列an中,a1 1,且滿足an 1 an an n 1 求通項公式
an 1 an an n 1 n 1 a n 1 n 2 ana n 1 an n 2 n 1 則bai an a n 1 n 1 n a n 1 a n 2 n n 1 a2 a1 3 2 所有項du 相乘zhi dao,得 an a1 n 1 2 an n 1 2 a1 n 1 2通項公內式容 ...