高二數學立體幾何題。急求,高二數學立體幾何的題怎樣做啊?

2021-08-18 04:41:35 字數 3711 閱讀 6871

1樓:韓增民鬆

昨天做完後,見樓上提供答案,就未提交,今天仔細看了答案,答案第一問結果與我做結果不同,特提供我做的,供參考:

如圖,平面α上定點f到定直線l的距離fa=2,曲線c是平面α上到定點f和到定直線l的距離相等的動點p的軌跡. 設fb⊥α,且fb=2.

(1)若曲線c上存在點p0,使得p0b⊥ab,試求直線p0b與平面α所成角θ的大小;

(2)對(1)中p0,求點f到平面abp0的距離h.

(1)解析:∵一動點p到定點的距離和到定直線的距離相等,則動點的軌跡為拋物線

∵fb⊥α,且fb=2

建立以af中點o為原點,以af方向為x軸,以ae方向為y軸, 以fb方向為z軸正方向的空間直角座標系o-xyz

∵af=2,∴a(-1,0,0),f(1,0,0),b(1,0,2)

則在xy平面,曲線c方程為y^2=4x

∴動點p0(y^2/4,y,0)

向量ab=(2,0,2),向量p0b=(1-y^2/4,-y,2)

∵p0b⊥ab

∴向量ab*向量p0b =2-y^2/2+0+4=0==>y=2√3

∴動點p0(3,2√3,0)

∴向量p0b=(-2,-2√3,2)==>|向量p0b|=2√5

向量fb=(0,0,2)==>|向量fb|=2

向量p0b*向量fb =4

cos《向量p0b,向量fb >=(向量p0b*向量fb)/(|向量p0b|*|向量fb|)=4/(4√5)= √5/5

(2)解析:由(1)知,向量ab=(2,0,2),向量p0b=(-2,-2√3,2)

設向量m(x,y,z)是面abp0的一個法向量

∴向量ab*向量m=2x+2z=0

向量p0b*向量m=-2x-2√3y+2z=0

令y=1,則x=-√3/2,z=√3/2

∴向量m(-√3/2,1,√3/2)==>|向量m|=√10/2

向量p0f=(-2,-2√3,0)

向量m*向量p0f=√3-2√3=-√3

則f到平面p0ab的距離為向量p0f在平面法線上的投影

即,d=|向量m*向量p0f|/|向量m|=√3/(√10/2)=√30/5

2樓:

高二數學立體幾何的題怎樣做啊?

3樓:社南樂正楠

一.空間想象能力的提高。 開始學習的時候,首先要多看簡單的立體幾何題目,不能從難題入手。自己動手畫一些立體幾何的圖形,比如教材上的習題,輔導書上的練習題,不看原圖,自己先畫。

畫出來的圖形很可能和給出的圖不一樣,這是好事,再對比一下,那個圖更容易解題。 二.邏輯思維能力的培養。 培養邏輯思維能力,首先是牢固掌握數學的基礎知識,其次掌握必要的邏輯知識和邏輯思維。

1.加強對基本概念理解。 數學概念是數學知識體系的兩大組成部分之一,理解與掌握數學概念是學好數學,提高數學能力的關鍵。

對於基本概念的理解,首先要多想。比如對異面直線的理解,兩條直線不在同一個平面是簡單的定義,如何才能不在同一個平面呢,第一是把同一個[平面上的直線離開這個平面,或者用兩支筆來比劃,這樣直觀上有了異面直線的概念,然後想在數學上怎麼才能保證兩條直線不在一個平面,那些條件能保證兩條直線不在一個平面。我們多去想想,就可以知道,只要直線不平行,並且不相交,那麼就異面,對於不平行的條件,在平面幾何中我們已經知道,如何能保證不相交呢,想象延長線等手段能不能得到證明呢,如果不能,那麼把其中一條直線放在一個平面,看另外一條直線和這個平面是否平行,這樣我們對異面直線的概念就比較容易掌握。

這在立體幾何“簡單幾何體”部分的學習中顯得尤為突出,本章節中涉及大量的基本概念,掌握概念的合理性,嚴謹性,辨析相近易混的概念。如:正四面體與正三稜錐、長方體與直平行六面體、軸截面與直截面、球面與球等概念的區別和聯絡。

2.加強對數學命題理解,學會靈活運用數學命題解決問題。 對數學的公理,定理的理解和應用,突出反映在題目的證明和計算上。

需要避免證明中出現邏輯推理不嚴密,運用定理、公理、法則時言非有據,或以主觀臆斷代替嚴密的科學論證,書寫格式不合理,層次不清,數學符號語言使用不當,不合乎習慣等。 (1)重視定理本身的證明。我們知道,定理本身的證明思路具有示範性,典型性,它體現了基本的邏輯推理知識和基本的證明思想的培養,以及規範的書寫格式的養成。

做到不僅會分析定理的條件和結論,而且能掌握定理的內容,證明的思想方法,適用範圍和表達形式.特別是進入高中學習以後所涉及到的一些新的證題的思想方法,如新教材上的立體幾何例題:“過平面外一點與平面內一點的直線,和平面內不經過該點的直線是異面直線.

”此定理的證明就採用了反證法,那麼反證法的證題思想就需要去體會,一般步驟,書寫格式,注意要點等.並配以適當的訓練,以初步掌握應用反證法證明立體幾何題. (2) 提高應用定理分析問題和解決問題的能力.

這常常體現在遇到一個幾何題以後,不知從何下手.對於習題,我們首先需要知道:要幹什麼(要求的結論是什麼),那些條件能滿足要求,這樣一步一步往前找條件。

當然這要根據具體情況,需要多看習題,我反對題海,但必要的練習是不可以缺少的 希望我的回答能給你一些幫助!

高二數學立體幾何的題 5

4樓:匿名使用者

設abc所在的圓半徑為r,則ab弧=1/3*2兀r=兀,r==3/2,則ab=根號3/2*r=3根號3/4,v=sh=253/256

高二數學立體幾何題求解!

5樓:飛昇上青天

(2)...挺簡單的,平行四邊形ehgf四邊長度都確定了,所以只有當鄰邊相互垂直是面積才能最大。eh平行於bd,hg平行於ac,所以當ac垂直於bd時,四邊形面積最大

6樓:手機使用者

理論上講立體幾何要比平面幾何難學,而你恰恰相反,就像醫生常說的你這病不是病,是因為你立體幾何的思維在你腦海中深深紮根,遇到平面幾何的時候卻總還自覺不自覺的想到立體幾何,從你上面說的那句話就可以看得出來,平面幾何裡哪有線面垂直啊。跳出立體幾何的圈子,回想一下初中時學平面幾何是的感覺,就會好的。我相信一個幾何感如此好的人,平面幾何絕對不是問題。

很不錯哦,你可以試下gぃ

7樓:匿名使用者

解:∵ac與bd的角為θ

∴ef與eh的角為θ

∴平行四邊形efgh的面積s=ef×eh×sinθ在bd上取一點o,使oe//ad,得平行四邊形ehdo∴eh/bd = ae/ab = λ

即 eh=bλ

同理可得ef=(1-λ)a

得:平行四邊形efgh的面積s=(1-λ)λ.b.a.sinθ若為λ定值時

180≥θ≥0 當θ=90時sinθ最大等於1平行四邊形efgh的面積s也最大,即:s=(1-λ)λ.b.a若為θ定值時 1≥λ≥0

運用微積分求的 平行四邊形efgh的最大面積s =0.25.b.a.sinθ

8樓:沾化捏草

好像是90度90度時直接是ef乘以fg

一道高二數學立體幾何題

9樓:匿名使用者

如圖所示:b‘baid是對角du平面bb’zhid‘與對角平面a’b‘cd的交線,dao

易證明:△a’c’b是正三角內形,

bk、容a’l是正三角形△a’c’b的二條中線,h是二條中線bk、a’l的點

所以h是正三角形△a’c’b重心。

急!高二數學立體幾何求破第一問!為什麼我用向量求分子不是0也就是不平行求破

你的f點座標求錯了。pf 1 3 pc 1,2 3,1 3 t f點座標 1,2 3,2 3 t 平面法向量為 0,t,1 為什麼非用du向量做啊 我以前zhi沒學過你現在的dao方法 連ac交專be於n ab bc de bc de 2ae 屬ae ad an ac 1 3 在 pac中 fc 2...

高中立體幾何數學題,求解 急, 高中數學 立體幾何問題 急求解線上等 !

因為沒有圖,且都是立體幾何,所以在電腦上比較麻煩,我只給你說下思路 1.1 pa垂直與底面,所以pa cd,因為cd垂直ad,所以cd垂直面pad,所以cd pa。2 過f做abcd垂線,fg,g是矩形abcd對角線交點,則面連線eg,則eg ad,所以eg 面pad,又因為fg pa,所以面efg...

高二數學立體幾何不會怎麼辦?做一道題錯一道,我該怎麼辦

立體幾何是最簡單的。你只要把圖看懂,答案就自然出來的。你去把書上的立體幾何這一章再看一遍,把書上的課後題目全部做一遍。主要是做完之後看答案,想想正確的思路步奏是什麼樣的。這塊很好提升的,相信自己,要多做題,不能懶。首先鄙人是一名高三理科生 曾經跟你一樣有過這個問題。我給你兩條建議,親測有效!1.第一...