1樓:飄渺的綠夢
∫{1/[x(x^2+1)]}dx
=∫{x/[x^2(x^2+1)]dx
=(1/2)∫{1/[x^2)(x^2+1)]}d(x^2)=(1/2)∫{[(x^2+1)-x^2]/[x^2)(x^2+1)]}d(x^2)
=(1/2)∫{1/x^2)d(x^2)-(1/2)∫[1/(x^2+1)]d(x^2)
=(1/2)ln|x^2|-(1/2)ln|x^2+1|+c=ln|x|-(1/2)ln(x^2+1)+c
2樓:
解:法一:
令u=x^2,則du=2xdx
∫1/[x(x^2+1)]dx
=1/2·∫1/[u(u+1)]du
=1/2·∫[1/u-1/(u+1)]du=1/2·∫1/u du-1/2·∫1/(u+1) d(u+1)=1/2·lnu-1/2·ln(u+1)+c=1/2·ln[u/(u+1)]+c
=1/2·ln[x^2/(x^2+1)]+c法二:∫1/[x(x^2+1)]dx
=∫x/[x^2(x^2+1)] dx
=1/2·∫1/[x^2(x^2+1)] d(x^2)=1/2∫[1/x^2-1/(x^2+1)] d(x^2)=1/2·[lnx^2-ln(x^2+1)]+c=1/2·ln[x^2/(x^2+1)]+c
3樓:匿名使用者
上下同乘x 上面湊dx^2 分母直接拆開----解決。下面請自己完成
∫1/(x√(x^2+1))dx求不定積分問題如圖,我做的答案選項裡沒有,求鑑定!
4樓:匿名使用者
注意ln|(√(1+x^2)-1)/x| - (-ln|(√(1+x^2)+1)/x|)
=ln|(√(1+x^2)-1||√(1+x^2)+1)/x^2|
=0所以你的答案和a是一樣的
5樓:匿名使用者
所得答案經恆等變換可得a項形式,此題沒有問題。
6樓:微號頭像
∫√bai(1-x^2) /x dx
=∫x√du(1-x^2) /x² dx
=(1/2)∫√zhi(1-x^2) /x² dx²令√(1-x^2)=u,則dao
內1-x²=u²,dx²=-du²=-2udu=(1/2)∫ -2u²/(1-u²) du=∫ u²/(u²-1²) du
=∫ (u²-1+1)/(u²-1²) du=∫ (1+1/(u²-1²)) du
=u + (1/2)ln|容(u-1)/(u+1)| + c=√(1-x²) + (1/2)ln|(√(1-x²)-1)/(√(1-x²)+1)| + c
求∫1/(x^2+1)(x^2+x)dx的不定積分詳細過程
7樓:茹翊神諭者
先拆成三項,再求積分
8樓:東方欲曉
∫1/(x^2+1)(x^2+1 + x -1)dx
= ∫1 + x/(x^2+1)- 1/(x^2+1)dx (partial fraction)
= x + (1/2)ln(x^2+1) - arctan(x) + c
求∫1/[(x+1)^2(x^2+1)]dx的不定積分,謝謝
9樓:珠海
^^|答:
原式=∫[(x+2)/[2(x+1)^回2]-x/[2(x^2+1)] dx
=1/2*∫[(x+1+1)/(x+1)^2-x/(x^2+1) dx
=1/2*∫(1/(x+1)+1/(x+1)^2-x/(x^2+1))dx
=1/2*[ln|答x+1|-1/(x+1)-1/2*ln(x^2+1)]+c
=1/2*ln|(x+1)/√(x^2+1)|-1/2(x+1)+c
求∫dx/(x^2+x+1)^2的不定積分
10樓:匿名使用者
∫1/(x²+x+1)² dx
= ∫1/[(x+1/2)²+3/4]² dx令x+1/2=√3/2*tanθ,dx=√3/2*sec²θ dθsinθ=(x+1/2)/√(x²+x+1),cosθ=(√3/2)/√(x²+x+1)
原式= (√3/2)∫sec²θ/(3/4*sec²θ)² dθ= (√3/2)(16/9)∫sec²θ/sec⁴θ dθ= 8/(3√3)*∫cos²θ dθ
= 4/(3√3)*∫(1+cos2θ) dθ= 4/(3√3)*(θ+1/2*sin2θ) + c= 4/(3√3)*arctan[(2x+1)/√3] + (2x+1)/[3(x²+x+1)] + c
求不定積分2xx2,求不定積分2xx211dx
x tant,dx sec2tdt dx 2x 2 1 x 2 1 1 2 sec2tdt 2tan2t 1 sect dt cost 2sin2t cos2t 1 costdt 2sin2t cost2 1 1 sin2t d sint arctan sint c 三角替換有sint x 1 x2...
ln(1 x)x的不定積分,ln(1 x)的不定積分怎麼求
ln 1 x x的不定積分是 x 1 ln 1 x x c。ln 1 x dx x ln 1 x xd ln 1 x x ln 1 x x 1 x dx x ln 1 x 1 x 1 1 x dx x ln 1 x 1 1 1 x dx x ln 1 x x ln 1 x c x 1 ln 1 x ...
x 3 dx,求不定積分, 1 x 3 dx,求不定積分
1 x 3dx x 3 dx x 2 2 c 1 2x c 1 x dx 1 2x c 不定積分 1 1 x 3 dx 有什麼好方法 1 x 1 x x 1 設 a x 1 bx c x x 1 通分後計算分母得1,所以 a x x 1 bx c x 1 1 a b x a b c x a c 1 ...