導數應用怎麼搞的,二階導數有什麼性質

2021-03-03 21:12:48 字數 2388 閱讀 6314

1樓:匿名使用者

進一步**函式的凸凹性,在不能明顯看出一階導0點時用

2樓:匿名使用者

該點的導數表示該點的切線的斜率

二階連續導數是什麼意思? 一般怎麼運用的,在哪些地方用到

3樓:喬科詹庫我

二階連續導數即為二階導數,是原函式導數的導數,將原函式進行二次求導。一般的,函式y=f(x)的導數yˊ=fˊ(x)仍然是x的函式,則y′′=f′′(x)的導數叫做函式y=f(x)的二階導數。在圖形上,它主要表現函式的凹凸性。

運用1、切線斜率變化的速度,表示的是一階導數的變化率。

2、函式的凹凸性(例如加速度的方向總是指向軌跡曲線凹的一側)。

4樓:匿名使用者

二階連續導數指的是 「二階導數是連續的」,具體哪些地方用到的這裡不好說。比如 taylor 公式的 lagrange 餘項,就要求 「有直到 n+1 階的連續導數」,再有一般是出現在習題裡,有的要有這個條件才能推出結論。

5樓:

就是二階導數都連續,這個條件很強的。

6樓:菜鳥也不知道

二階導數就是對一階倒數再次求導。

7樓:匿名使用者

也就是二次求導嘛,可用來判斷函式的凹凸性和函式的單調性

二階導數有什麼用的?可以用來證明什麼?什麼時候可能用到?

8樓:匿名使用者

二階導數,是原函式導數的導數,將原函式進行二次求導。一般的,函式y=f(x)的導數y『=f』(x)仍然是x的函式,則y』=f『(x)的導數叫做函式y=f(x)的二階導數。二階導數是比較理論的、比較抽象的一個量,它不像一階導數那樣有明顯的幾何意義,因為它表示的是一階導數的變化率。

如果只給出了函式存在二階導數,是不是不能隨便進行二階導,二階導數和二階連續導數做題時應用的區別 10

9樓:匿名使用者

在某一區間內二階可導是函式可以有二階導數,

但是二階導數不一定連續有二階連續導數是函式有二階導數,

而且二階導數連續

二階導數連續和二階導數存在的區別是什麼

10樓:學雅思

一、相關性不同

1、二階導數連續:二階導數連續則二階導數必定存在。

2、二階導數存在:二階導數存在二階導數不一定連續。

二、幾何含義不同

1、二階導數連續:二階導數連續函式圖形是連續的曲線。

2、二階導數存在:二階導數存在函式圖形不一定是連續的。

擴充套件資料

二階導數,是原函式導數的導數,將原函式進行二次求導。一般的,函式y=f(x)的導數yˊ=fˊ(x)仍然是x的函式,則y′′=f′′(x)的導數叫做函式y=f(x)的二階導數。在圖形上,它主要表現函式的凹凸性。

如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼對於區間i上的任意x,y,總有:f(x)+f(y)≥2f[(x+y)/2],如果總有f''(x)<0成立,那麼上式的不等號反向。

幾何的直觀解釋:如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼在區間i上f(x)的圖象上的任意兩點連出的一條線段,這兩點之間的函式圖象都在該線段的下方,反之在該線段的上方。

結合一階、二階導數可以求函式的極值。當一階導數等於0,而二階導數大於0時,為極小值點。當一階導數等於0,而二階導數小於0時,為極大值點;當一階導數和二階導數都等於0時,為駐點。

設f(x)在[a,b]上連續,在(a,b)內具有一階和二階導數,那麼,若在(a,b)內f''(x)>0,則f(x)在[a,b]上的圖形是凹的;若在(a,b)內f(x)<0,則f(x)在[a,b]上的圖形是凸的。

11樓:匿名使用者

二階導數連續 = 二階導數存在 同時 二階導函式還要是連續函式

也就是說,二階導數連續則二階導數一定存在;

反之,二階導數存在則二階導數不一定連續

12樓:匿名使用者

二階導數連續是存在且連續的。

二階導數存在是存在,不一定連續。

應用高等數學最值應用題,為什麼求二階導數,這類最值應用題求二階導數就行了嗎?

13樓:史嘟嘟

第一步是求一階導

bai數,令一階du

導數等zhi於0,解出來的點,就是極值dao點。再求二階專導數,將駐點的座標代屬入到二階導數的表示式。如果大於0,將駐點值代入原來的函式,得到的就是最小值;如果小於0,將駐點值代入原來的函式,得到的就是最大值

二階導數的意義,二階導數意義

簡單來說,一階導數是自變數的變化率,二階導數就是一階導數的變化率,也就是一階導數變化率的變化率。1 連續函式的一階導數就是相應的切線斜率。一階導數大於0,則遞增 一階倒數小於0,則遞減 一階導數等於0,則不增不減。2 而二階導數可以反映圖象的凹凸。二階導數大於0,圖象為凹 二階導數小於0,圖象為凸 ...

二階導數的意義,二階導數的幾何意義

簡單來說,一階導數是自變數的變化率,二階導數就是一階導數的變化率,也就是一階導數變化率的變化率。1 連續函式的一階導數就是相應的切線斜率。一階導數大於0,則遞增 一階倒數小於0,則遞減 一階導數等於0,則不增不減。2 而二階導數可以反映圖象的凹凸。二階導數大於0,圖象為凹 二階導數小於0,圖象為凸 ...

這個求二階導數對嗎?為什麼二階導數是在一階導數求導後還要再除

引數方程的二階導數就是這樣來求的,顯然dy dx dy dt dx dt 那麼d 2 y dx 2 d dy dx dx 現在已經得到了dy dx與 t的關係,dy dx是 t的函式了所以dy dx不能直接對x求導,而是要先對t 求導,再乘以 dt dx 即d 2 y dx 2 d dy dx dx...