如何利用一階導數及二階導數分析函式的單調性 極值 最值 影象的凹凸性及拐

2021-03-27 04:08:24 字數 5161 閱讀 4787

1樓:匿名使用者

單調性::

(1)若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函式駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。

(2)若已知函式為遞增函式,則導數大於等於零;若已知函式為遞減函式,則導數小於等於零。

根據微積分基本定理,對於可導的函式,有:

如果函式的導函式在某一區間內恆大於零(或恆小於零),那麼函式在這一區間內單調遞增(或單調遞減),這種區間也稱為函式的單調區間。導函式等於零的點稱為函式的駐點,在這類點上函式可能會取得極大值或極小值(即極值可疑點)。進一步判斷則需要知道導函式在附近的符號。

對於滿足的一點,如果存在使得在之前區間上都大於等於零,而在之後區間上都小於等於零,那麼是一個極大值點,反之則為極小值點。另外極值不一定等於最值。求最值還需要求出區間邊界的函式值,再與極值比較,進一步取得區間最小值

x變化時函式(藍色曲線)的切線變化。函式的導數值就是切線的斜率,綠色代表其值為正,紅色代表其值為負,黑色代表值為零。

凹凸性:

可導函式的凹凸性與其導數的單調性有關。如果函式的導函式在某個區間上單調遞增,那麼這個區間上函式是向下凹的,反之則是向上凸的。如果二階導函式存在,也可以用它的正負性判斷,如果在某個區間上恆大於零,則這個區間上函式是向下凹的,反之這個區間上函式是向上凸的。

曲線的凹凸分界點稱為曲線的拐點。

函式的單調性,極值,凹凸性,拐點及漸近線如何求

2樓:善言而不辯

y=(5/9)x²-x^(5/3)  定義域dux∈r

y'=(10/9)x-(5/3)x^(2/3)駐點zhix=27/8 左-右dao+為極小值點   x=0 左-右- 不是極值點

極小值y(27/8)=-81/64

單調專遞減區間

屬x∈(-∞,27/8),單調遞增區間x∈(27/8,+∞)y''=10/9-(10/9)x^(-1/3)拐點x=1 不可導點x=0

x∈(-∞,0) y''>0 凹區間

x∈(0,1) y''<0 凸區間

x∈(1,+∞) y''>0凹區間

lim(x→-∞)[y/x]=lim(x→-∞)[(5/9)x-x^(2/3)]=-∞

lim(x→-∞)[y/x]=lim(x→+∞)[(5/9)x-x^(2/3)]=+∞

漸近線不存在。

(紅色:原函式;藍色:一階導數;黃色:二階導數)

為什麼二階導數能判斷函式凹凸性

3樓:華燈初上

二階導數的bai作用是根據其正負,判du斷一階導數zhi的單調性(二dao階導數大於零,那麼一階導版數單調遞增權

;二階導數小於零,那麼一階導數單調遞減),然後根據一階導數的單調性以及一階導數的某些值,判斷其是否有零點(比如說一階導數在x=0處的值是正的,而x>0時,一階導數都是單調遞增的,那麼x>0時,一階導數肯定沒有零點),藉此判斷原函式的極值。二階導數取值如果有大於零,又有小於零的部分,那麼在這之間必然存在某個點,二階導數等於零,例如當x<0時,二階導數大於零,x>0時,二階導數小於零,那麼當x=0時,二階導數必然等於零。也就是說這一點的一階導數取到極值,由舉例的二階導數的正負還能判斷出這個極值是極大值。

之後就是藉以判斷一階導數的影象特點(也就是單調性,極值,零點之類的),然後再判斷原函式的影象特點,得出函式凹凸性。

為什麼二階導數可以判斷極值

4樓:我是一個麻瓜啊

二階導數的作用是根據其正負,判斷一階導數的單調性(二階導數大於零,那麼一階導數單調遞增;二階導數小於零,那麼一階導數單調遞減)。

然後根據一階導數的單調性以及一階導數的某些值,判斷其是否有零點(比如說一階導數在x=0處的值是正的,而x0時,一階導數都是單調遞增的,那麼x0時,一階導數肯定沒有零點),藉此判斷原函式的極值。

結合一階、二階導數可以求函式的極值。當一階導數等於0,而二階導數大於0時,為極小值點。當一階導數等於0,而二階導數小於0時,為極大值點;當一階導數和二階導數都等於0時,為駐點。

5樓:手機使用者

注意,以下判斷都是建立在原函式以及其任意階導數都是連續函式的基礎上的。

二階導數的作用是根據其正負,判斷一階導數的單調性(二階導數大於零,那麼一階導數單調遞增;二階導數小於零,那麼一階導數單調遞減),然後根據一階導數的單調性以及一階導數的某些值,判斷其是否有零點(比如說一階導數在x=0處的值是正的,而x0時,一階導數都是單調遞增的,那麼x0時,一階導數肯定沒有零點),藉此判斷原函式的極值。

二階導數取值如果有大於零,又有小於零的部分,那麼在這之間必然存在某個點,二階導數等於零,例如當x<0時,二階導數大於零,x0時,二階導數小於零,那麼當x=0時,二階導數必然等於零。也就是說這一點的一階導數取到極值,由舉例的二階導數的正負還能判斷出這個極值是極大值。之後就是藉以判斷一階導數的影象特點(也就是單調性,極值,零點之類的),然後再判斷原函式的影象特點。

希望幫到你o(∩_∩)o

有問題追問哦

一階導能求出函式極值和最值,那二階導能求出什麼

6樓:匿名使用者

1,可以把一階導抄

數看為原函式,用二階導bai數研究其單調性等du。2,二階導zhi數的零點是原函式凸凹性dao

拐點(凸凹性不同的書定義不同,有的相反,所以這裡就不給出具體的凸凹區間了)一階導數單調增的區間是原函式的凸區間,二階導數大於零是原函式圖區間(按照我看到的教材定義的,不同教材可能相反) 很容易理解,二階導數大於零也就是一階導數的增區間

7樓:匿名使用者

能求出一階導數的單調性,也就是可以求出原函式的凹凸性,這與琴生不等式等內容有關~

8樓:匿名使用者

二階導數為0的點是函式的拐點

函式的凹凸性為什麼要用二階導數

9樓:晚夏落飛霜

一階導數反映的是函式斜率,而二階導數反映的是斜率變化的快慢,表現在函式的影象上就是函式的凹凸性。

f′′(x)>0,開口向上,函式為凹函式,f′′(x)<0,開口向下,函式為凸函式。

凸凹性的直觀理解:

設函式y=f(x)在區間i上連續,如果函式的曲線位於其上任意一點的切線的上方,則稱該曲線在區間i上是凹的;如果函式的曲線位於其上任意一點的切線的下方,則稱該曲線在區間i上是凸的。

確定曲線y=f(x)的凹凸區間和拐點的步驟:

1、確定函式y=f(x)的定義域;

2、求出在二階導數f"(x);

3、求出使二階導數為零的點和使二階導數不存在的點;4、判斷或列表判斷,確定出曲線凹凸區間和拐點。

10樓:angela韓雪倩

在函式f(x)的圖象上取任意兩點,如果函式圖象在這兩點之間的部分總在連線這兩點的線段的下方,那麼這個函式就是凹函式。

直觀上看,凸函式就是圖象向上突出來的。比如如果函式f(x)在區間i上二階可導,則f(x)在區間i上是凹函式的充要條件是f''(x)>=0;f(x)在區間i上是凸函式的充要條件是f''(x)<=0;

通俗的講,一個函式求了一階導數(如大於o),只能說明是遞增,但不知是遞增的越來越快還是越來越慢(可以類比加速度的思想),只有求了二階導數才知道遞增的速度,即凹凸性。

擴充套件資料:

設函式f(x)在區間i上定義,若對i中的任意兩點x1和x2,和任意λ∈(0,1),都有 f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),若不等號嚴格成立,即"<"號成立,則稱f(x)在i上是嚴格凹函式。

如果"<="換成">="就是凸函式。類似也有嚴格凸函式。

設f(x)在區間d上連續,如果對d上任意兩點a、b恆有f((a+b)/2)<(f(a)+f(b))/2

那麼稱f(x)在d上的圖形是(向上)凹的(或凹弧);如果恆有f((a+b)/2)>(f(a)+f(b))/2

那麼稱f(x)在d上的圖形是(向上)凸的(或凸弧)

這個定義從幾何上看就是:

在函式f(x)的圖象上取任意兩點,如果函式圖象在這兩點之間的部分總在連線這兩點的線段的下方,那麼這個函式就是凹函式。 同理可知,如果函式影象在這兩點之間的部分總在連線這兩點線段的上方,那麼這個函式就是凸函式。

如果函式f(x)在區間i上二階可導,則f(x)在區間i上是凸函式的充要條件是f''(x)<=0;f(x)在區間i上是凹函式的充要條件是f''(x)>=0;

琴生(jensen)不等式(也稱為詹森不等式):(注意前提、等號成立條件)設f(x)為凸函式,則f[(x1+x2+……+xn)/n]≤[f(x1)+f(x2)+……+f(xn)]/n(下凸);設f(x)為凹函式,f[(x1+x2+……+xn)/n]≥[f(x1)+f(x2)+……+f(xn)]/n(上凸),稱為琴生不等式。

加權形式為:f[(a1*x1+a2*x2+……+an*xn)]≤a1f(x1)+a2f(x2)+……+anf(xn)(下凸);f[(a1*x1+a2*x2+……+an*xn)]≥a1f(x1)+a2f(x2)+……+anf(xn)(上凸),其中ai≥0(i=1,2,……,n),且a1+a2+……+an=1.

如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼在區間i上f(x)的圖象上的任意兩點連出的一條線段,這兩點之間的函式圖象都在該線段的下方,反之在該線段的上方。

結合一階、二階導數可以求函式的極值。當一階導數等於0,而二階導數大於0時,為極小值點。當一階導數等於0,而二階導數小於0時,為極大值點;當一階導數和二階導數都等於0時,為駐點。

11樓:

我是一線高中數學教師,希望能幫到你。

在函式f(x)的圖象上取任意兩點,如果函式圖象在這兩點之間的部分總在連線這兩點的線段的下方,那麼這個函式就是凹函式。

直觀上看,凸函式就是圖象向上突出來的。比如如果函式f(x)在區間i上二階可導,則f(x)在區間i上是凹函式的充要條件是f''(x)>=0;f(x)在區間i上是凸函式的充要條件是f''(x)<=0;

通俗的講,一個函式求了一階導數(如大於o),只能說明是遞增,但不知是遞增的越來越快還是越來越慢(可以類比加速度的思想),只有求了二階導數才知道遞增的速度,即凹凸性。

導數是不是單調性看一次導數,拐點和凹凸性看二次導數?

12樓:楊建朝

對於可導連續函式是這樣的,根據一階導數的正負確定單調性,根據二階導數為0確定拐點,根據二階導數的正負確定凹凸性,二階導數為正時為凸。二階導數為負時為凹。

什麼是一階導數二階導數,什麼是一階求導,什麼是二階求導

解答 對原函 bai數du求導數,zhi得到計算原函式上每一點的斜率的新函式 導函dao數,簡稱一 次導回數。一次導數可以答用來尋找原函式上的極值點的位置。對一次導函式求導,得到二次導函式。平時所說的導數其實都是指一次導函式。二次導函式的意義在於判斷原函式上每一點的凹凸性,判斷極值的特性,極大還是極...

這個求二階導數對嗎?為什麼二階導數是在一階導數求導後還要再除

引數方程的二階導數就是這樣來求的,顯然dy dx dy dt dx dt 那麼d 2 y dx 2 d dy dx dx 現在已經得到了dy dx與 t的關係,dy dx是 t的函式了所以dy dx不能直接對x求導,而是要先對t 求導,再乘以 dt dx 即d 2 y dx 2 d dy dx dx...

二階導數的意義,二階導數意義

簡單來說,一階導數是自變數的變化率,二階導數就是一階導數的變化率,也就是一階導數變化率的變化率。1 連續函式的一階導數就是相應的切線斜率。一階導數大於0,則遞增 一階倒數小於0,則遞減 一階導數等於0,則不增不減。2 而二階導數可以反映圖象的凹凸。二階導數大於0,圖象為凹 二階導數小於0,圖象為凸 ...