求定積分1x1xdx上限3下限

2021-03-07 00:32:03 字數 2494 閱讀 8937

1樓:drar_迪麗熱巴

答案是√2 - 2/√3

解題過程如下:

∫[1→√3] 1/[x²√(1+x²)] dx

令x=tanu,則√(1+x²)=secu,dx=sec²udu,u:π/4→π/3

=∫[π/4→π/3] [1/(tan²usecu)](sec²u) du

=∫[π/4→π/3] secu/tan²u du

=∫[π/4→π/3] cosu/sin²u du

=∫[π/4→π/3] 1/sin²u dsinu

=-1/sinu ||[π/4→π/3]

=√2 - 2/√3

定積分是積分的一種,是函式f(x)在區間[a,b]上積分和的極限。

這裡應注意定積分與不定積分之間的關係:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式。

定理一般定理

定理1:設f(x)在區間[a,b]上連續,則f(x)在[a,b]上可積。

定理2:設f(x)區間[a,b]上有界,且只有有限個間斷點,則f(x)在[a,b]上可積。

定理3:設f(x)在區間[a,b]上單調,則f(x)在[a,b]上可積。

牛頓-萊布尼茨公式

定積分與不定積分看起來風馬牛不相及,但是由於一個數學上重要的理論的支撐,使得它們有了本質的密切關係。把一個圖形無限細分再累加,這似乎是不可能的事情,但是由於這個理論,可以轉化為計算積分。

2樓:匿名使用者

∫[1→√3] 1/[x²√(1+x²)] dx令x=tanu,則√(1+x²)=secu,dx=sec²udu,u:π/4→π/3

=∫[π/4→π/3] [1/(tan²usecu)](sec²u) du

=∫[π/4→π/3] secu/tan²u du=∫[π/4→π/3] cosu/sin²u du=∫[π/4→π/3] 1/sin²u dsinu=-1/sinu ||[π/4→π/3]=√2 - 2/√3

【數學之美】團隊為您解答,若有不懂請追問,如果解決問題請點下面的「選為滿意答案」。

求定積分1/x^2(1+x^2)^1/2 上限根號3,下限1

3樓:匿名使用者

令x = tanθ

,dx = sec²θdθ,x∈[1,√3]→θ∈[π/4,π/3]∫(1~√3) 1/[x²√(1 + x²)] dx= ∫(π/4~π/3) sec²θ/(tan²θsecθ) dθ= ∫(π/4~π/3) 1/cosθ • cos²θ/sin²θ dθ

= ∫(π/4~π/3) cscθcotθ dθ= - cscθ |(π/4~π/3)

= - 1/sin(π/3) + 1/sin(π/4)= √2 - 2/√3

求定積分∫(上限根號3下限1/根號3)1/(1+x^2)dx

4樓:pasirris白沙

1、本題的積分方法是直接套用公式,積出來的原函式是arctanx;

2、然後代入上下限,得到結果 π/6;

3、具體解答過程如下,如有疑問、質疑,歡迎指出。

有問必答、有疑必釋、有錯必糾。

5樓:郜語糜翠梅

arctan3+arctan1,這個是基本的積分計算公式,是由arctanx推出倒數為1/1+x^2,y=arctanx就是tany=x這個隱函式。兩邊求導的y『=(cosy)^2,假設一個三角形,一邊長為x,一邊長為1,x邊所對的角為y,那麼是不是有tany=x,則有cosy=1/根號1+x^2,那麼y'=1/(1+x^2).就這樣,自己畫圖!

6樓:薊婀千幻竹

^因為(arctanx)的導數是1/(1+x^2),所以∫dx/(1+x^2)=arctanx,又其下/上限為[-1,3^0.5],根據定積分基本規則,可得該定積分=arctan(3^0.5)-arctan(-1)=π/3-(-π/4)=7π/12

7樓:鬱繡答育

令x=tant,dx=(sect)^2dt.

x=0時t=0,x=1時,t=π/4,所以∫(0,1)

dx/√[(1+x^2)^3]

=∫(0,π/4)

cost

dt=sin(π/4)

=√2/2

求解定積分∫(上限根號3,下限為1)方程是dx/x的平方乘以根號下1+(x的平方)

8樓:

^∫(1,√3) dx/(x^抄2√(1+x^bai2))換元,x=tant

=∫du(π

zhi/4,π/3) d(tant)/(tan^2t√dao(1+tan^2t))

=∫(π/4,π/3) (1/cos^2t)/(tan^2t*(1/cost)) dt

=∫(π/4,π/3) cost/sin^2t dt=∫(π/4,π/3) sin^(-2)t d(sint)=-sin^(-1)t | (π/4,π/3)=2-2√3/3

有不懂歡迎追問

1x2上限根號3下限1求定積分

因為 arctanx 的導數是bai1 1 x 2 所以 dx 1 x 2 arctanx,又其下 duzhi 上限為 1,3 0.5 根據定積分基dao本規則,專可得該定積分 arctan 3 0.5 arctan 1 屬 3 4 7 12 arctan3 arctan1,這個是基本的積分計算公式...

求定積分上限2,下限1根號x1xdx,要解答過程

將原式拆解為根號x分之一減去x分之一然後分別在1到2上求積分 前項積出來是二倍根號後項積為 lnx.後面就不用我說了吧 結果應該為2 根號2 1 ln2 我理解 根號x 1 的意思是 根號 x 1 解答如下 令根號 x 1 t,則x t 2 1,dx 2tdt 求定積分 上限2,下限1 根號下x 1...

求定積分上限1,下限1x1x32dx

先分為兩bai個積分,前一個du積分被積函式是x,奇函zhi數,積分結果為0 後一個dao積內分注意1 x 3 0,因此平方容與開方正好抵消 被積函式就剩下 1 x 3,x 3為奇函式,積分結果為0,被積函式只剩下 1,因此,積分結果為 2 計算定積分 上限1 2 下限0 根號 1 x 2 dx 令...