問函式f x 在x 0時為xsin

2021-03-11 13:08:13 字數 5294 閱讀 2101

1樓:匿名使用者

函式在某點可導的充要條件是函式在該點的左右極限都存在且相等.也可以說是左導數

回和右導數都存在且相等.

思路:答證明函式f(x)在x=0的左導數和右導數存在且相等,證明函式在x=0處連續,

x/=0,

limx趨向於0+x^2sin1/x

limx趨向於0+x^2=

、>0,趨向於0,limx趨向於0 x^2=0^2=0x>0,x^2>0,>0趨向於0,則趨向於0+,趨向於0limx趨向於0-x^2

limx趨向於0x^2=0^2=0

x<0,趨向於0,x<0,x^2>0,x^2>0而且當x趨向於0時候的極限為0

則x^2>0,趨向於0

當limx趨向於0-x^2=0+,趨向於0limx趨向於0-x^2=limx趨向於0+x^2=0說明在x=0處連續,即可導

2樓:匿名使用者

因為在補充x=0,f(x)=0之前,x=0是這個函式的一個間斷點,極限不存在,當給x=0處f(x)=0後函式在該點連續且左右極限存在且相等,所以可導

3樓:hhh莫得

當x趨向於0時極限存在即可導,x趨近於0時,1/x趨近於無窮大,sin函式為有界函式,前一項趨近於無窮小,所以極限是0,存在極限,故該函式可導

問:f(x)=x²sin1/x x≠0,0 x=0在x=0是否可導

4樓:匿名使用者

可導必定連續,所以要先證明連續.

x→0時,因為sin1/x有界,x²→0,所以x²sin1/x→0,lim(x→0) f(x)=0=f(0),所以f(x)在x=0處連續.

而f ′+(0)=lim(x→0+)( f(x)-f(0))/(x-0)=lim(x→0+)xsin1/x=0

f ′﹣(0)=lim(x→0﹣)( f(x)-f(0))/(x-0)=lim(x→0﹣)xsin1/x=0

所以f ′﹣(0)=f ′+(0),所以f ′(0)存在,因此f(x)在x=0處可導

函式當x不等於0時,y=x^2sin1/x,當x=0時,y=0,在x=0處的連續性和可導性

5樓:小小米

函式當x不等於0時,y=x^2sin1/x,當x=0時,y=0,在x=0處連續且不可導。

函式與不等式和方程存在聯絡(初等函式)。令函式值等於零,從幾何角度看,對應的自變數的值就是影象與x軸的交點的橫座標。

從代數角度看,對應的自變數是方程的解。另外,把函式的表示式(無表示式的函式除外)中的「=」換成「<」或「>」,再把「y」換成其它代數式,函式就變成了不等式,可以求自變數的範圍。

6樓:

x-->0時,sin(1/x)有界,x²-->0,所以,y-->0,連續。

可導性:y'=2xsin(1/x)+x²cos(1/x)(-1/x²)=2xsin(1/x)-cos(1/x),前項為0,後項不確定,不可導。

請問一道問題: 討論函式f(x)=xsin1/x,(x不等於0)和f(x)=0,(x=0) 在x=0處的連續性與可導性

7樓:116貝貝愛

解題過程如下:

性質:不是所有的函式都有導數,一個函式也不一定在所有的點上都有導數。若某函式在某一點導數存在,則稱其在這一點可導,否則稱為不可導。

然而,可導的函式一定連續;不連續的函式一定不可導。

對於可導的函式f(x),x↦f'(x)也是一個函式,稱作f(x)的導函式(簡稱導數)。尋找已知的函式在某點的導數或其導函式的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運演算法則也**於極限的四則運演算法則。

反之,已知導函式也可以倒過來求原來的函式,即不定積分。微積分基本定理說明了求原函式與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。

函式可導的條件:

1、函式在該點的去心鄰域內有定義。

2、函式在該點處的左、右導數都存在。

8樓:匿名使用者

答案在插圖:這種題(特別是討論某點時的連續和可導)的關鍵就從定義出發來判斷函式在某點的連續性和可導性。

設f(x)在x=x0的某鄰域可導,且f'(x)=a ,則存在當x趨向於x0時limf'(x)等於a這個4號命題為什麼是錯的

9樓:匿名使用者

唉,你要知道,導數

來f'(x)這個地方已經有自一個bai極限du符號了.現在要zhi求導函式的極限,也就是說會有兩dao個極限符號啊姐姐,你用洛必達只用了一次好嗎?

函式可導,但導函式不一定連續的例子比比皆是,最經典的就是分段函式f(x)=x²sin(1/x),x≠0.f(x)=0,x=0.顯然這個函式在x=0的鄰域可導,並且有f'(0)=0.

但導函式請你自己求一下,是2xsin(1/x)-cos(1/x),cos(1/x)當x→0時有極限嗎沒有,所以導函式在0這一點極限存在嗎不存在.

10樓:卍殤殤卍

f'(x)=a確實可以寫成

f'(x)=lim fx-fx0/x-x0確實也可以嘗試!!使用洛必達

f'(x)=lim f'(x)

洛必達等號成立的條件是極限存在專

或為無窮大。你無法判斷極屬

限是否存在,也就無法寫等號了。加油

limx→0(xsin1/x)的值,大神解答。

11樓:drar_迪麗熱巴

x→0時,limx是無窮小,sin1/x為有界量.

因此兩者之積是無窮小量=0.

有界量乘以無窮小量仍是無窮小.

無窮小量是數學分析中的一個概念,用以嚴格地定義諸如「最終會消失的量」、「絕對值比任何正數都要小的量」等非正式描述。

無窮小量是數學分析中的一個概念,在經典的微積分或數學分析中,無窮小量通常它以函式、序列等形式出現。無窮小量即以數0為極限的變數,無限接近於0。

確切地說,當自變數x無限接近x0(或x的絕對值無限增大)時,函式值f(x)與0無限接近,即f(x)→0(或f(x)=0),則稱f(x)為當x→x0(或x→∞)時的無窮小量。特別要指出的是,切不可把很小的數與無窮小量混為一談。

12樓:我是一個麻瓜啊

0。limx→0(xsin1/x),limx→0(x)乘以limx→0(sin1/x),sin1/x是正弦函式,是一個有值域的有界函式,0乘以有界,都為0。

有界函式是設f(x)是區間e上的函式,若對於任意的x屬於e,存在常數m、m,使得m≤f(x)≤m,則稱f(x)是區間e上的有界函式。其中m稱為f(x)在區間e上的下界,m稱為f(x)在區間e上的上界。

13樓:韓苗苗

limx→0(xsin1/x)d的極限不存在,

x→∞時,

x=1/(kπ)→0,sin(1/x)→0,原式→0

x=1/[(2k+1/2)π]→0,sin(1/x)→1,原式→1

x=1/[(2k-1/2)π]→0,sin(1/x)→-1,原式→-1

x從不同方向趨近時,值不相同,所以原式極限不存在。

擴充套件資料

極限」是數學中的分支——微積分的基礎概念,廣義的「極限」是指「無限靠近而永遠不能到達」的意思。

數學中的「極限」指:某一個函式中的某一個變數,此變數在變大(或者變小)的永遠變化的過程中,逐漸向某一個確定的數值a不斷地逼近而「永遠不能夠重合到a」(「永遠不能夠等於a,但是取等於a『已經足夠取得高精度計算結果)的過程中,此變數的變化,被人為規定為「永遠靠近而不停止」、其有一個「不斷地極為靠近a點的趨勢」。

極限是一種「變化狀態」的描述。此變數永遠趨近的值a叫做「極限值」(當然也可以用其他符號表示)。

14樓:薔祀

結果等於 1。

換元,令(1/x) =t ,

則 x→+∞等價於 t →0,

x·sin1/x= (sin t /t) =1。

極限的思想是近代數學的一種重要思想,數學分析就是以極限概念為基礎、極限理論(包括級數)為主要工具來研究函式的一門學科。

所謂極限的思想,是指「用極限概念分析問題和解決問題的一種數學思想」。

擴充套件資料

極限的思想方法貫穿於數學分析課程的始終。可以說數學分析中的幾乎所有的概念都離不開極限。

在幾乎所有的數學分析著作中,都是先介紹函式理論和極限的思想方法,然後利用極限的思想方法給出連續函式、導數、定積分、級數的斂散性、多元函式的偏導數,廣義積分的斂散性、重積分和曲線積分與曲面積分的概念。如:

(1)函式在 點連續的定義,是當自變數的增量趨於零時,函式值的增量趨於零的極限。

(2)函式在 點導數的定義,是函式值的增量 與自變數的增量 之比 ,當 時的極限。

(3)函式在 點上的定積分的定義,是當分割的細度趨於零時,積分和式的極限。

(4)數項級數的斂散性是用部分和數列 的極限來定義的。

(5)廣義積分是定積分其中 為,任意大於 的實數當 時的極限,等等。

參考資料

15樓:匿名使用者

極限為0

原因:定理:無窮小乘有界函式仍為無窮小。

無窮小:極限為零的函式稱為無窮小函式(此

題中x為無窮小)

有界函式:記住幾個常見的sinx,cosx,sin1/x,cos1/x

16樓:別樣de時光

「limx→0(x)乘以limx→0(sin1/x)

0乘以有界,或者按你思路limx→0(x乘以1/x)都為0」

17樓:匿名使用者

|xsin(1/x)|<=|x|

所以, 是0

18樓:展翅翱翔

這等於1啊!用兩個重要極限,變形limxsin1/x=lim(sin1/x)/(1/x)=1

問y=sinxsin1/x的間斷點為0是什麼間斷點,為什麼?

19樓:匿名使用者

y=sinxsin1/x的間斷點為0是第一類可去間斷點。

因為lim(x->0)sinxsin1/x=0極限存在。

間斷點簡介

回:設一元實函式答f(x)在點x0的某去心鄰域內有定義。如果函式f(x)有下列情形之一:

(1)在x=x0沒有定義;

(2)雖在x=x0有定義,但x→x0 limf(x)不存在;

(3)雖在x=x0有定義,且x→x0 limf(x)存在,但x→x0 limf(x)≠f(x0),

則函式f(x)在點x0為不連續,而點x0稱為函式f(x)的間斷點。

函式fx在點x0處可導是fx在點x0處可微的

由函式在某點可導,根據定義 有k f x0 lim x 0 f x x f x x 1由1得,y k x o x x 0 即是可微的定義.故可微與可導等價.函式f x 在點x0可導是f x 在點x0可微的什麼條件 充分必要條件 對於一元函式f x 而言,可導和可微是等價的,互為充分必要條件。函式f ...

若函式fx在點X0處可導,則fx在點X0處A

c.連續但未必可導.如f x x,f x x x,不可導 函式f x 在點x0處可導,則 f x 在點x0處 c.連續但未必可導.如f x x,f x x x,不可導 c,x和絕對值x就可以說明 c。例如函式f x x x0,在x0處f x 可導,而 f x 不可導。望採納。如果函式f x 在點x0...

若函式fx在點x0處可導,則fx在點x0的某鄰域內必

f x x 2d x d x 就是dirichlet函式,有 理點為1,無理點為0。則f 0 lim f x f 0 x 0 0,f在0可導,但f x 在0連續,在不等於0的任意內地方都不連續。容 可導是左極限等於右極限,連續還得左極限等於右極限等於函式在該點的函式值 所以錯啊 如果函式f x 在點...