1樓:匿名使用者
1/(baix+2)du-(x^2+2x+1)/(zhix-2)÷(daox^2-1)/(x-1),其中x=(根號
回2)-2
=1/(x+2)-(x+1)^2/(x-2) *(x-1)/(x-1)(x+1)
=1/(x+2)-(x+1)/(x-2)
=1/(x+2)-(x+1)/(x-2)
=[(x-2-(x+2)(x+1)]/[(x+2)(答x-2)]
=(x-2-x^2-3x-2)/[(x+2)(x-2)]=-(x^2+2x+4)/[(x+2)(x-2)]=-[(√2-2)^2+2(√2-2)+4]/[((√2-2)+2)((√2-2)-2)]
=-[2-4√2+4+2√2-4+4]/[(√2)(√2-4)]=-[6-2√2]/[(√2)(√2-4)]=-[3√2-2]/[(√2-4)]
=-[(3√2-2)(√2+4)]/[(√2+4)(√2-4)]=-[(6+12√2-2√2-8)]/[(2-16)]=-[(-2+10√2)]/[(-14)]=(-1+5√2)/7
2樓:匿名使用者
(4 + 2 x + x^2)/(4 - x^2)
=(3 - sqrt[2])/(-1 + 2 sqrt[2])
3樓:匿名使用者
^解:制1/(x+2)-(x^2+2x+1)/(x-2)÷(x^2-1)/(x-1)
=1/(x+2)-(x+1)²/(x-2) *(x-1)/[(x+1)(x-1)]
=1/(x+2)-(x+1)/(x-2)
=(1-x-1)/(x-2)
=-x/(x-2)
當x=√
2-2時,
原式=-(√2-2)/(√2-2-2)
=(2-√2)(√2+4)/[(√2+4)(√2-4)]=(√2+8-2-4√2)/(2-16)
=(3√2-6)/14
先化簡再求值:(1-1/x)/(x^2-2x+1)/(x^2-1),其中x=根號2
4樓:匿名使用者
^(1-1/x)/(x^dao2-2x+1)/(x^2-1)=[(x-1)/x]/[(x+1)(x+1)]/[(x+1)(x-1)]
=[(x-1)/x]/[(x+1)/(x-1)]=1/x/[(x+1)
=1/[x(x+1)]
=1/(2+根號
專屬2)
=(2-根號2)/[(2+根號2)(2-根號2)]=(2-根號2)/2
先化簡,再求值:(x-1/x)-(x-2/x+1)除以2x^2-x/x^2+2x+1,其中x滿足x^2-x-1=0。
5樓:匿名使用者
[(x-1)/x-(x-2)/(x+1)]÷[(2x^zhi2-x)/(x^2+2x+1)]
=[(x-1)(x+1)/x(x+1)-x(x-2)/x(x+1)]÷[x(2x-1)/(x+1)²]
=×dao[(x+1)²/x(2x-1)]=[(2x-1)(x+1)]/[x²(2x-1)]=(x+1)/x²
=1上式最後一步利
回用條答件:x^2-x-1=0
可化為:x^2=x+1
先化簡,再求值。(1/x+1+x^2-2x+1/x^2-1)÷x-1/x+1,其中x=2
6樓:匿名使用者
^先化簡,再求值。
(1/x+1+x^2-2x+1/x^2-1)÷x-1/x+1,其中x=2
解,得:
==(1/x+1+x^2-2x+1/x^2-1)*(x+1)/(x-1)
==1/(x+1)*(x+1)/(x-1)+x(x-2)(x+1)/(x-1)
==(x-1)+x(x-2)(x+1)/(x-1)==[(x-1)^2+x(x-2)(x+1)]/(x-1)把x==2帶入式子得
1+0/1==1
7樓:匿名使用者
^原式=[(x-1)^2-1+1/x+1/x^2]/x-1/x+1=[1-1+1/x+1/x^2]/x-1/x+1=1/x^3+1/x^2+1/x+1-2/x=(1/x+1)^3-2/x
=27/8-1
=19/8
X 2 1 X 1 9 a0 a1x a2x 2a11 x11,求展開式中係數最大項
1 設 x 1 9 b0 b1x b2x 2 b9x 9 x 2 x 1 9 b0x 2 b1x 3 b9x 11 上二式相加得 x 2 1 x 1 9 b0 b1x b0 b2 x 2 b1 b3 x 3 b7 b9 x 9 b8x 8 b9x 11 b0 c 0,9 b1 c 1,9 b2 c ...
x x 1 1 x 1 x 2 1 x 2 x 31 x 2019 x 2019並且當x 1時,該
解 1 x x 1 1 x 1 x 2 1 x 2 x 3 1 x 2009 x 2010 1 x 1 x 1 1 x 1 1 x 2 1 x 2 1 x 3 1 x 2009 1 x 2010 1 x 1 x 2010 故當x 1時,原式 1 1 2011 2010 2011 原式 1 x 1 x...
x2x1x4x3x,x2x1x4x3x3x2x5x4,初二數學計算題
原式 1 1 x 1 1 1 x 3 1 1 x 2 1 1 x 4 1 x 1 1 x 3 1 x 2 1 x 4 1 x 1 1 x 4 1 x 2 1 x 3 2x 5 x 1 x 4 2x 5 x 2 x 3 2x 5 1 x 1 x 4 1 x 2 x 3 2x 5 x 2 5x 6 x ...