1樓:只想做個過容
不收斂。交錯級數,un不等於零。取絕對值後,是等比級數,公比為2,不收斂。
2樓:風火輪
利用等比數列求和公式可求出價絕對值的級數的具體值,所以該級數絕對收斂。
判斷級數∑((-1)^n)(n+1)/3^n斂散性 如果收斂 是絕對收斂還是條件收斂
判斷級數∑[(-1)^n *(√n^2+1-n)]是否收斂,若收斂,條件收斂還是絕對收斂?
3樓:陀梅花舜碧
如果通項就是((-1)^n/√n)+(1/n),那麼級數發散.
原因是∑(-1)^n/√n收斂(leibniz判別法,交錯級數,
絕對值單調趨於0),
而∑1/n發散.
一個收斂級數與一個發散級數的和是發散的.
如果原題通項是(-1)^n/√(n+1/n),那麼級數收斂.
同樣是由leibniz判別法(n+1/n單調遞增).
取絕對值後,
通項1/√(n+1/n)與1/√n是等價無窮小.
根據比較判別法,
∑1/√(n+1/n)發散.
因此級數是條件收斂的.
冪級數(-1)^n•1/n+1是絕對收斂還是條件收斂
4樓:小小芝麻大大夢
條件收斂。
分析過程如下:
(1)因為|(-1)^n/(n+1)|=1/(n+1),而∑1/(n+1)發散,所以∑|(-1)^n/(n+1)|發散;
(2)因為1/(n+1)單調遞減且lim(n—>無窮)1/(n+1)=0,所以由leibniz交錯級數判別法知∑(-1)^n/(n+1)收斂。
綜上,冪級數(-1)^n•1/n+1條件收斂。
5樓:drar_迪麗熱巴
條件收斂.
(1)因為|(-1)^n/(
n+1)|=1/(n+1),而∑1/(n+1)發散,所以∑|(-1)^n/(n+1)|發散;
(2)因為1/(n+1)單調遞減且lim(n—>無窮)1/(n+1)=0,所以由leibniz交錯級數判別法知∑(-1)^n/(n+1)收斂.
綜上,級數條件收斂.
條件收斂
一般的級數u1+u2+...+un+...
它的各項為任意級數。
如果級數σu各項的絕對值所構成的正項級數σ∣un∣收斂,則稱級數σun絕對收斂。
如果級數σun收斂,
而σ∣un∣發散,
則稱級數σun條件收斂。
級數(-1)^n1/n-1/(n^2+1)收斂?如果是,是絕對收斂還是條件收斂
6樓:520娟
首先看∑1/ln(1+n)
因為lim(n→∞)1/ln(1+n)/(1/n)=lim(n→∞) n/ln(1+n)=lim(n→∞) 1/(1/(n+1))
=lim(n→∞) n+1=∞
而∑1/n發散,所以∑1/ln(1+n)發散所以不是絕對收斂
然後對於交錯級數∑(-1)^n-1/ln(1+n)收斂性,由萊布里茨判別法:
lim(n→∞)1/ln(1+n)=0
且 1/ln(1+n)>1/ln(n+2)所以交錯級數∑(-1)^n-1/ln(1+n)收斂,且和s<1/ln2
級數∞∑n=1(-1)^nln(n+1/n)是否收斂?如果收斂,是絕對收斂還是條件收斂?
7樓:員長順夷子
1、leibniz判別法來
,1/nln(n+1)單調遞減源
趨於0,故收斂bai。
2、是du乘吧。若是除的話,zhi
通項1/(1/n^dao1/2+(-1)^n/n)不趨於0,顯然不收斂。
乘的話,開啟,通項是(-1)^(n-1)/n^1/2(收斂,leibniz判別法)和-1/n(不收斂),合起來不收斂
判定級數∑(n=1,∞)(-1)n(n+1)!/n^n-1是否收斂 是絕對收斂還是條件收斂
8樓:匿名使用者
^^^題目不明確,應為 ∑(-1)^n [(n+1)!/n^(n-1)] 吧!
ρ = lim→∞
版>|a/a|
= lim(n+2)! n^(n-1)/[(n+1)^n (n+1)!]
= lim(n+2) n^(n-1)/[(n+1)^n ]
= lim(n+2)/(n+1) lim[n/(n+1)]^(n-1)
= 1* lim^[-(n-1)/(n+1)]
= e^lim-(n-1)/(n+1) = e^lim-(1-1/n)/(1+1/n) = 1/e < 1.
原級數權絕對收斂。
9樓:redd李德和眾國
有沒有-1是-1的n次?不然沒什麼意思呀
怎麼判斷級數 n 1i n n是否收斂
原級數絕對收斂。lim a a lim n 2 n n 1 n 1 n n 1 lim n 2 n n 1 n 1 n lim n 2 n 1 lim n n 1 n 1 1 lim n 1 n 1 e lim n 1 n 1 e lim 1 1 n 1 1 n 1 e 1.1.發散與收斂對於數列和...
級數1n是發散還是收斂,級數n是收斂還是發散
級數 1 n 稱為調和級數,是發散的。級數n是收斂還是發散 顯然發散,因此通項不是趨於 0 級數n?有這種叫法?如果你所說的是 n 那發散。級數 1 的n次方 n是收斂還是發散 這個是交錯級數,後項的絕對值比前項的絕對值小。而且這個級數一般項的極限是0 根據萊布尼茨定理,這個級數是收斂的。當然,只是...
級數1n根號n1的斂散性,選填絕對收斂條件收斂發散
很簡單的,死記住。這種前面有 1 n的都是收斂的,關鍵是區分是條件收斂還是絕對收斂。n趨於無窮時,n 1就趨於n,根號n就是n的1 2次方。次方為 0,1 為條件收斂,1,無窮 為絕對收斂。此題1 2 0,1 所以為條件收斂 一般項遞減趨於0的交錯級數,收斂。第一步 判斷其未加絕對值時的級數是否收斂...