1樓:匿名使用者
∫(3,+∞) dx/[(x-1)^4 ∨(x²-2x)]=∫(3,+∞) dx/[(x-1)^4 ∨((x-1)²-1)] ①
令x-1=secθ,則x=1+secθ
dx=secθtanθdθ
x∈[3,+∞),則x-1 ∈[2,+∞),即secθ∈[2,+∞)secθ=1/cosθ
secθ=2時,cosθ=1/2,θ=π/3secθ=+∞時,cosθ=0,θ=π/2所以θ∈[π/3,π/2]
①=∫(π/3,π/2) secθ·tanθdθ /[(secθ)^4 ·tanθ]
=∫(π/3,π/2) cos³θdθ=∫(π/3,π/2) cos²θdsinθ=∫(π/3,π/2) (1-sin²θ)dsinθ=(sinθ-1/3 sin³θ)|(π/3,π/2)=1-1/3-∨3/2+1/3 (∨3/2)³=2/3-3∨3/8
2樓:吉祥長樂
1、如果只是定積分的話,必是閉區間。但可以證明,改變定積分的有限個點的函式值
不影響可積性,也不影響積分值,因此其實改為開區間也沒有問題。
2、如果只是涉及到定積分的不等式(就是不等式裡只有定積分的值),根據上面的結論知道沒有影響的。
3、最好發一下具體問題,沒有具體問題無法回答。
3樓:匿名使用者
第一行x-1=1/cosa,x從3到正無窮,x-1從2到正無窮,或者1/cosa範圍是2到正無窮,cosa的範圍是0到1/2,所以a的範圍是pi/3到pi/2。這裡的a就是下面的角度,手機不太好列印那個角度符號。
定積分的上下限怎麼定義的
4樓:
我覺得應該從定積分的歷史**考慮,定積分起源於現實問題:變速直線運動在一段時間內所行駛的路程,這裡面的積分上下限就是時刻,小的時刻做下限,大的時刻做上限,這樣計算出來的數值才能有意義,所以實際問題中一般是小的做下限,大的做上限。如果題目沒特殊要求就這樣,而調換上下限的只是改變符號,不會對計算造成多大困難。
求問定積分上下限的問題
5樓:匿名使用者
1、根據定積分的定義,這種型別的極限題目, 首要的是先找出一個 1/n,這是 dx; 2、然後確定 i/n,這是 xi,這樣就找到了被積函式; 3、再確定xi的上下限。具體過程如下 :
問定積分上下限以及求解定積分的問題
6樓:匡起雲潘丙
第一個問題我也沒看明白。。。我看的書中貌似沒遇到這樣的問題,你可以不管這個輔導書怎麼說的,直接用不定積分求,然後利用原積分在[0,2]上連續,可以定出不定積分後出現的常數!第二個問題是定積分中,被積函式有絕對值時的一般處理方法,此題為一典型例題,把積分限分為[0,x]和[x,1],這樣的話,對於前一個區間內tx,這樣就可以去掉絕對值進行積分運算了!
關於定積分上下限問題!
7樓:匿名使用者
面積得到的是函式曲線在一段區域內與x軸與y軸圍城的面積,那麼一定是正的,而sinx在-π到0上的積分是負值,因此如果求面積就要加上絕對值,所以面積等於4,積分為0
高數定積分問題求解,高數定積分問題求解謝謝
曲線y x 令切點為p t,t 其中,t 0,2 對 y x求導 y 1 2 x 切點p t,版t 的切線斜率權k 1 2 t 切線方程 y 1 2 t x t t x 2 t t 2 曲線 切線 x 0 x 2圍成圖形的面積 s 0至2 x 2 t t 2 x dx x2 4 t x t 2 2 ...
定積分問題
有問題哦。你那個答案是湊巧對了,但是過程不對的。1 1是瑕來點,當x趨於1時,1 x 2 4x 3 1 x 1 x 3 等價源於 1 2 x 1 而後者瑕積分不收斂,故原積分不收斂。2 1是瑕點,當x趨於1時,1 x lnx 2 1 等價於1 x 1 2,而後者瑕積分不收斂,故原積分不收斂。定積分問...
高數定積分問題大學高數定積分問題
其一,應用牛頓 萊布尼茨公式,得到原函式是常函式c,而常函式c是自變數為定義域內的任何數值,函式值仍為c,之差 即定積分值 為0。其二從定積分的定義來看,無論小區間怎樣分,其被積函式f x 均為0,被積函式f x 與自變數之積也為0,定積分定義中的極限為0,定積分也為0。其三,從定積分的幾何意義看,...