1樓:
這個比較簡單 你用思維去理解
我給你一個思路;比如和差化積公式 把角a b 同時換成一樣的不就是2倍角公式嗎?
半形公式 就是把二倍角換成單倍角嗎? 頂多用下角的推廣!
sin/cos=tan cos/sin=cot 那麼cot*tan=1嗎?
等等 所有的三角函式都可以推導! 不用去死記的!
2樓:匿名使用者
其實數學也就是這樣,你死記的話,沒有用的,關鍵是應用
3樓:匿名使用者
好的。我這兒有很齊全的。你留個地址,我傳給你。
4樓:tq唐乾
你等我一天!我給你看個東西!明天我就改這個回覆
ps:滿意的話記得給我那40分哦
三角函式公式大全
5樓:景煊承恩霈
^^平方關係
sin^2(α)
cos^2(α)=1
cos(2a)=cos^2(a)-sin^2(a)=1-
2sin^2(a)=2cos^2(a)-1
sin(2a)=2sin(a)cos(a)
tan^2(α)
1=1/cos^2(α)
2sin^2(a)=1-cos(2a)
cot^2(α)
1=1/sin^2(a)
積的關係
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
倒數關係
tanα
·cotα=1
sinα
·cscα=1
cosα
·secα=1
商的關係
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
sinβ
cosβ
tanβ
cotβ
secβ
cscβ
360°k
αsinα
cosα
tanα
cotα
secα
cscα
90°-α
cosα
sinα
cotα
tanα
cscα
secα
90°α
cosα
-sinα
-cotα
-tanα
-cscα
secα
180°-α
sinα
-cosα
-tanα
-cotα
-secα
cscα
180°
α-sinα
-cosα
tanα
cotα
-secα
-cscα
270°-α
-cosα
-sinα
cotα
tanα
-cscα
-secα
270°
α-cosα
sinα
-cotα
-tanα
cscα
-secα
360°-α
-sinα
cosα
-tanα
-cotα
secα
-cscα
﹣α-sinα
cosα
-tanα
-cotα
secα
-cscα
兩角和與差的三角函式
cos(α
β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ
sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α
β)=(tanα
tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1
tanα·tanβ)
和差化積
公式sinα
sinβ=2sin[(α
β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α
β)/2]sin[(α-β)/2]
cosα
cosβ=2cos[(α
β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α
β)/2]sin[(α-β)/2]
積化和差公式
sinα·cosβ=(1/2)[sin(α
β)sin(α-β)]
cosα·sinβ=(1/2)[sin(α
β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α
β)cos(α-β)]
sinα·sinβ=-(1/2)[cos(α
β)-cos(α-β)]
倍角公式
sin(2α)=2sinα·cosα=2/(tanα
cotα)
cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2
tan(2α)=2tanα/(1-tan^2α)
cot(2α)=(cot^2α-1)/(2cotα)
sec(2α)=sec^2α/(1-tan^2α)
csc(2α)=1/2*secα·cscα
三倍角公式
sin(3α)
=3sinα-4sin^3α
=4sinα·sin(60°
α)sin(60°-α)
cos(3α)
=4cos^3α-3cosα
=4cosα·cos(60°
α)cos(60°-α)
tan(3α)
=(3tanα-tan^3α)/(1-3tan^2α)
=tanαtan(π/3
α)tan(π/3-α)
cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)
n倍角公式
sin(nα)=ncos^(n-1)α·sinα-c(n,3)cos^(n-3)α·sin^3α
c(n,5)cos^(n-5)α·sin^5α-…
cos(nα)=cos^nα-c(n,2)cos^(n-2)α·sin^2α
c(n,4)cos^(n-4)α·sin^4α-…
半形公式
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1
cosα)/2)
tan(α/2)=±√((1-cosα)/(1
cosα))=sinα/(1
cosα)=(1-cosα)/sinα
cot(α/2)=±√((1
cosα)/(1-cosα))=(1
cosα)/sinα=sinα/(1-cosα)
sec(α/2)=±√((2secα/(secα
1))csc(α/2)=±√((2secα/(secα-1))
輔助角公式
asinα
bcosα=√(a^2
b^2)sin(α
φ)(tanφ=b/a)
asinα
bcosα=√(a^2
b^2)cos(α-φ)(tanφ=a/b)
萬能公式
sin(a)=
(2tan(a/2))/(1
tan^2(a/2))
cos(a)=
(1-tan^2(a/2))/(1
tan^2(a/2))
tan(a)=
(2tan(a/2))/(1-tan^2(a/2))
降冪公式
sin^2α=(1-cos(2α))/2=versin(2α)/2
cos^2α=(1
cos(2α))/2=covers(2α)/2
tan^2α=(1-cos(2α))/(1
cos(2α))
三角和的三角函式
sin(α
βγ)=sinα·cosβ·cosγ
cosα·sinβ·cosγ
cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α
βγ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α
βγ)=(tanα
tanβ
tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
其它公式
1sin(a)=(sin(a/2)
cos(a/2))^2
1-sin(a)=(sin(a/2)-cos(a/2))^2
csc(a)=1/sin(a)
sec(a)=1/cos(a)
cos30=sin60
sin30=cos60
推導公式
tanα
cotα=2/sin2α
tanα-cotα=-2cot2α
1cos2α=2cos^2α
1-cos2α=2sin^2α
1sinα=[sin(α/2)
cos(α/2)]^2
要所有三角函式誘導公式,三角函式所有的誘導公式,
以下是六個三角函式誘導公式 公式一 設 為任意角,終邊相同的角的同一三角函式的值相等sin 2k sin k z cos 2k cos k z tan 2k tan k z cot 2k cot k z 公式二 設 為任意角,的三角函式值與 的三角函式值之間的關係sin sin cos cos ta...
三角函式公式大全,三角函式公式大全
asina bcos a 2 b 2 sin x 這是輔助角公式 如sin 6 3cos 6 2 1 2sin 6 3 2cos 6 2sin 6 3 2sin 2 2 asina bcos a 2 b 2 sin x 這是輔助角公式 三角函式公式大全 平方關係 sin 2 cos 2 1 cos ...
求高中所有關於三角函式的公式,求高中三角函式中所有的公式
sin 2 e5a48de588b662616964757a686964616f31333264636330 cos 2 1 cos 2a 1 cos2a 2 tan 2 1 sec 2 sin 2a 1 cos2a 2 cot 2 1 csc 2 積的關係 sin tan cos cos cot ...