1樓:君子蘭
以下是六個三角函式誘導公式:
公式一:設α為任意角,終邊相同的角的同一三角函式的值相等sin(2kπ+α)=sinα(k∈z)
cos(2kπ+α)=cosα(k∈z)
tan(2kπ+α)=tanα(k∈z)
cot(2kπ+α)=cotα(k∈z)
公式二:設α為任意角,π+α的三角函式值與α的三角函式值之間的關係sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:任意角α與-α的三角函式值之間的關係sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α與α的三角函式值之間的關係sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:π/2±α與α的三角函式值之間的關係sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα
三角函式所有的誘導公式,
2樓:匿名使用者
公式一: 設α為任意角,終邊相同的角的同一三角函式的值相等:
sin(2kπ+α)=sinα (k∈z)
cos(2kπ+α)=cosα (k∈z)
tan(2kπ+α)=tanα (k∈z)
cot(2kπ+α)=cotα(k∈z)
公式二: 設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:
sin(π+α)= -sinα
cos(π+α)=-cosα
tan(π+α)= tanα
cot(π+α)=cotα
公式三: 任意角α與-α的三角函式值之間的關係(利用 原函式 奇偶性):
sin(-α)=-sinα
cos(-α)= cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四: 利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:
sin(π-α)= sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五: 利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:
sin(2π-α)=-sinα
cos(2π-α)= cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六: π/2±α與α的三角函式值之間的關係:
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα
推算公式:3π/2 ± α與α的三角函式值之間的關係:
sin(3π/2+α)=-cosα
sin(3π/2-α)=-cosα
cos(3π/2+α)=sinα
cos(3π/2-α)=-sinα
tan(3π/2+α)=-cotα
tan(3π/2-α)=cotα
cot(3π/2+α)=-tanα
cot(3π/2-α)=tanα
誘導公式記憶口訣:"奇變偶不變,符號看象限"。
3樓:匿名使用者
作用:可以將任意角的三角函式轉化為銳角三角函式. 比如:
sin390°=sin(360°+30°)=sin30°=1/2. tan225°=tan(180°+45°)=tan45°=1. cos150°=cos(90°+60°)=sin60°=√3/2.
規律:縱變橫不變,正負看象限 54個誘導公式,若一個一個的去死背,是一件很痛苦的事.但如果記住並會用八個字:
「奇變偶不變,符號看象限」【有的叫「豎變橫不變,符號看象限」】便可免除這一痛苦. 怎麼理解這八個字?有以下要點:
? 誘導角:有0°,90°,180°,270°,360°五個,「奇變偶不變」就是針對這五個誘導角說的.
90°和270°是90°的1倍和3倍,因此屬「奇」;0°,180°,360°是90°的0倍,2倍和4倍,因此屬「偶」.90°±α,270°±α,都要「變」;0°±α,180°±α,360°±α,都「不變」.變什麼?
怎麼變?變的是函式名稱,方法是正餘互變:正弦變餘弦,餘弦變正弦;正切變餘切,餘切變正切;正割變餘割,餘割變正割.
【豎變橫不變,則是指這些誘導角的終邊所在的位置說的,90° 和270°的終邊在y軸上,因此屬「豎變」;0°,180°,360°的終邊在x軸上,屬「橫不變」】 ? 符號看象限:在使用誘導公式時,千萬記住:
無論誘導角後面的α有多大,都要把它看作「銳角」,並由此決定用哪個象限的符號.如sin(90°+500°)=cos500°,誘導角是90°,因此sin變cos 把500°看作銳角,那麼90°+500°就要看作是第二象限的角,在第二象限內,sin為正,故變成cos後仍取正號.再如tan(180°-425°)=-tan425°,這是因為誘導角是180°,屬「偶不變」,425° 要看成銳角,那麼180°-425°就是第二象限的角,在第二象象限內tan為負,故變化後前面要加負號.
?記住六個三角函式在四個象限裡的符號.六個三角函式分為三組:
①sin,csc;②cos,sec;③tan,cot;每一組內的兩個函式無論在哪個象限,它們的符號總是相同的.然後按上面的順序記住:第一象限:
+++;第二象限:+--;第三象限:--+;第四象限:
-+-. ? 明白了上面的規矩和道理,誘導角就可任意選擇.
比如你舉的例子:sin(17π/2-α)=cosα 這是因為17(π/2)是90°的17倍,屬「奇」,sin要變cos,17π/2-α就看成90°-α屬第一象限,第一象限的sin為正,故cos前面取正號.sin(18π/2-α)=sin(9π-α)=sinα,這是因為18(π/2)是90°的偶數倍,屬「不變」,因此仍是sin,符號則取sin在第二象限的符號.
?第?所述是要很熟練時才能用,因為容易出錯,比較穩妥還是把過大的角的三角函式先用360°±α 變為小於360°的三角函式,然後再用誘導公式變為銳角三角函式較好.
如你的例子: sin(17π/2-α)=sin(8π+π/2-α)=sin(π/2-α)=cosα; sin(18π/2-α)=sin(9π-α)=sin(8π+π-α)=sin(π-α)=sinα. 這裡的誘導角都是8π,是2π的4倍,函式名稱不變,符號都取第一象限的符號,因為π/2-α和 π-α都要看成銳角.
我要一些三角函式的誘導公式,越多越好。
三角函式所有誘導公式
4樓:
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)
二倍角的正弦、餘弦和正切公式
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/(1-tan^2(α))
tan(1/2*α)=(sin α)/(1+cos α)=(1-cos α)/sin α
半形的正弦、餘弦和正切公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=(1—cosα)/sinα=sinα/1+cosα
萬能公式
sinα=2tan(α/2)/(1+tan^2(α/2))
cosα=(1-tan^2(α/2))/(1+tan^2(α/2))
tanα=(2tan(α/2))/(1-tan^2(α/2))
三倍角的正弦、餘弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
三角函式的和差化積公式
sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2)
sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)
cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)
cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)
三角函式的積化和差公式
sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα·sinβ=- 0.5[cos(α+β)-cos(α-β)]
5樓:瘋癲的小生活
是不是,sin cos tan?i
三角函式的誘導公式
6樓:
誘導公式:
公式一sin(2kπ+α)=sin α
cos(2kπ+α)=cos α
tan(2kπ+α)=tan α
cot(2kπ+α)=cot α
sec(2kπ+α)=sec α
csc(2kπ+α)=csc α
公式二sin(π+α)=-sin α
cos(π+α)=-cos α
tan(π+α)=tan α
cot(π+α)=cot α
sec(π+α)=-sec α
csc(π+α)=-csc α
公式三sin(-α)=-sin α
cos(-α)=cos α
tan(-α)=-tan α
cot(-α)=-cot α
sec(-α)=sec α
csc(-α)=-csc α
公式四sin(π-α)=sin α
cos(π-α)=-cos α
tan(π-α)=-tan α
cot(π-α)=-cot α
sec(π-α)=-sec α
csc(π-α)=csc α
公式五sin(α-π)=-sin α
cos(α-π)=-cos α
tan(α-π)=tan α
cot(α-π)=cot α
sec(α-π)=-sec α
csc(α-π)=-csc α
公式六sin(2π-α)=-sin α
cos(2π-α)=cos α
tan(2π-α)=-tan α
cot(2π-α)=-cot α
sec(2π-α)=sec α
csc(2π-α)=-csc α
公式七sin(π/2+α)=cosα
cos(π/2+α)=−sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sec(π/2+α)=-cscα
csc(π/2+α)=secα
公式八sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sec(π/2-α)=cscα
csc(π/2-α)=secα
公式九sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sec(3π/2+α)=-cscα
csc(3π/2+α)=secα
公式十sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sec(3π/2-α)=-cscα
csc(3π/2-α)=-secα
三角函式公式大全,三角函式公式大全
asina bcos a 2 b 2 sin x 這是輔助角公式 如sin 6 3cos 6 2 1 2sin 6 3 2cos 6 2sin 6 3 2sin 2 2 asina bcos a 2 b 2 sin x 這是輔助角公式 三角函式公式大全 平方關係 sin 2 cos 2 1 cos ...
關於所有三角函式的公式整理,求三角函式所有的公式整理以及它們分別的應用
這個比較簡單 你用思維去理解 我給你一個思路 比如和差化積公式 把角a b 同時換成一樣的不就是2倍角公式嗎?半形公式 就是把二倍角換成單倍角嗎?頂多用下角的推廣!sin cos tan cos sin cot 那麼cot tan 1嗎?等等 所有的三角函式都可以推導!不用去死記的!其實數學也就是這...
三角函式化簡,三角函式,怎麼化簡
cos 4n 1 4 a cos 4n 1 4 a 2cos 4n 1 4 a 4n 1 4 a 2 cos 4n 1 4 a 4n 1 4 a 2 2cos n cos 4 a 4 a 2 2cos n cos 4 a 2cos n cos 4 a 2 cos 4 a cos 4n 1 4 cos...