求微分方程通解,求詳細過程,求解微分方程通解的詳細過程

2022-05-27 09:51:37 字數 3074 閱讀 1070

1樓:匿名使用者

首先,把原式化簡一下,等式兩邊先同時除以dx,再同時除以x,就可以得到:

y/x+(1+y/x)(dy/dx)=0的等式 (0),

設u=y/x(1),推出dy/dx=(xdu/dx)+u (2),

將(1)(2)同時帶入(0)式:u+(1+u)(xdu/dx+u)=0

化簡以後可以得到:x(1+u)du/dx =-u^2-2u

繼續化簡就是:

-(1+u)/u(u+2)du=dx /x

兩邊同時積分.

右邊積分是ln x,

左邊的-(1+u)/u(u+2)=-1/2*[(1/u)+1/(u+2)]

-1/2*[(1/u)+1/(u+2)]du=-1/2*[du/u+du/(u+2)]

左邊積分後就是:-1/2*[ln u +ln(u+2)]

通解還要再加上一個常數c,

所以就是:-1/2*[ln u +ln(u+2)]=ln x+c

將u=y/x帶入得到-1/2*[ln(y/x)+ln(y/x+2)]=lnx+c

2樓:楊建朝

求詳細過程

具體解答如圖所示

3樓:匿名使用者

微分方程求通解,其詳細過程,見圖。

此題可以化為關於x的一階線性微分方程,可以直接代通解高數,得到微分方程的通解。

求微分方程通解,詳細過程見上圖。

求解微分方程通解的詳細過程

4樓:匿名使用者

y'=(2/x)y + x^2

letu=y/x^2

du/dx = (-2y/x^3 + y'/x^2)= -2u/x +y'/x^2

y'= x^2.du/dx + 2xu

/y'=(2/x)y + x^2

x^2.du/dx + 2xu = 2xu + x^2du/dx = 1

u= x+c

y/x^2 = x+c

y= x^3 +cx^2

求微分方程通解,要詳細步驟

5樓:勿忘心安

1)特徵方程為r²-5r+6=0, 即(r-2)(r-3)=0, 得r=2, 3

設特解y*=a, 代入方程得:6a=7, 得a=7/6

故通解y=c1e^(2x)+c2e^(3x)+7/6

2) 特徵方程為2r²+r-1=0, 即(2r-1)(r+1)=0, 得r=1/2, -1

設特解y*=ae^x, 代入方程得:

2a+a-a=2, 得a=1

因此通解y=c1e^(x/2)+c2e^(-x)+e^x

拓展資料:微分方程論是數學的重要分支之一。大致和微積分同時產生,並隨實際需要而發展。

含自變數、未知函式和它的微商(或偏微商)的方程稱為常(或偏)微分方程。

介紹含有未知函式的導數,如

的方程都是微分方程。一般的凡是表示未知函式、未知函式的導數與自變數之間的關係的方程,叫做微分方程。未知函式是一元函式的,叫常微分方程;未知函式是多元函式的叫做偏微分方程。

微分方程有時也簡稱方程。

概述大致與微積分同時產生。事實上,求y′=f(x)的原函式問題便是最簡單的微分方程。i.

牛頓本人已經解決了二體問題:在太陽引力作用下,一個單一的行星的運動。他把兩個物體都理想化為質點,得到3個未知函式的3個二階方程組,經簡單計算證明,可化為平面問題,即兩個未知函式的兩個二階微分方程組。

用叫做「首次積分」的辦法,完全解決了它的求解問題。17世紀就提出了彈性問題,這類問題導致懸鏈線方程、振動弦的方程等等。總之,力學、天文學、幾何學等領域的許多問題都導致微分方程。

在當代,甚至許多社會科學的問題亦導致微分方程,如人口發展模型、交通流模型……。因而微分方程的研究是與人類社會密切相關的。當初,數學家們把精力集中放在求微分方程的通解上,後來證明這一般不可能,於是逐步放棄了這一奢望,而轉向定解問題:

初值問題、邊值問題、混合問題等。但是,即便是一階常微分方程,初等解(化為積分形式)也被證明不可能,於是轉向定量方法(數值計算)、定性方法,而這首先要解決解的存在性、唯一性等理論上的問題。

6樓:撒念風

只能是c

2x-cosx是對應的齊次微分方程的解,原方程的通解為c(2x-cosx)+cosx

求微分方程y'=x+y的通解有詳細過程?

7樓:西域牛仔王

y' - y=x,

特徵方程 t - 1=0,根 t=1,

齊次方程通解 y=ce^x,

設特解 y=bx+c,

代入得 b=(b+1)x+c,

所以 b+1=0,b=c,

解得 b=c= - 1,

所以,原方程通解為 y=ce^x - x - 1

求微分方程y''-6y'+9y=0的通解 (詳細過程) 謝謝!!

8樓:匿名使用者

y = (c1 + c2 x ) e^(3x)解題過程如下:

解:y''-6y'+9y=0

特徵方程 r^2 - 6r +9=0

解得r1,2 = 3

所以通解 y = (c1 + c2 x ) e^(3x)常微分方程的概念、解法、和其它理論很多,比如,方程和方程組的種類及解法、解的存在性和唯一性、奇解、定性理論等等。下面就方程解的有關幾點簡述一下,以瞭解常微分方程的特點。

求通解在歷史上曾作為微分方程的主要目標,一旦求出通解的表示式,就容易從中得到問題所需要的特解。也可以由通解的表示式,瞭解對某些引數的依賴情況,便於引數取值適宜,使它對應的解具有所需要的效能,還有助於進行關於解的其他研究。

後來的發展表明,能夠求出通解的情況不多,在實際應用中所需要的多是求滿足某種指定條件的特解。當然,通解是有助於研究解的屬性的,但是人們已把研究重點轉移到定解問題上來。

9樓:匿名使用者

解:y''-6y'+9y=0

特徵方程 r^2 - 6r +9=0

解得r1,2 = 3

所以通解 y = (c1 + c2 x ) e^(3x)

求微分方程通解,要詳細步驟,求微分方程的通解,要詳細步驟謝謝

1 特徵方程為r 5r 6 0,即 r 2 r 3 0,得r 2,3 設特解y a,代入方程得 6a 7,得a 7 6 故通解y c1e 2x c2e 3x 7 6 2 特徵方程為2r r 1 0,即 2r 1 r 1 0,得r 1 2,1 設特解y ae x,代入方程得 2a a a 2,得a 1...

微積分 求下列微分方程的通解,求微分方程通解,要詳細步驟

a dy dx 2xy 0 dy dx 2xy dy y 2x dx ln y x 2 c y c.e x 2 b dy dx xy 2x dy dx x y 2 dy y 2 xdx ln y 2 1 2 x 2 c y 2 ce 1 2 x 2 y 2 ce 1 2 x 2 a dy dx 2x...

微分方程的通解求法,微分方程的通解怎麼求

二階常係數齊次線性微分方程解法 特徵根法是解常係數齊次線性微分方程的一種通用方法。設特徵方程r r p r q 0兩根為r1,r2。1 若實根r1不等於r2 y c1 e r1x c2 e r2x 2 若實根r1 r2 y c1 c2x e r1x 3 若有一對共軛復根 略 關於一階微分方程 齊次方...