1樓:drar_迪麗熱巴
答案為2、4、0。
解題過程如下:
1. a的行列式等於a的全部特徵值之積
所以 |a| = -1*1*2 = -2
2. 若a是可逆矩陣a的特徵值, 則 |a|/a 是a*的特徵值
所以a*的特徵值為 2,-2,-1
所以|a*| = 2*(-2)*(-1) = 4.
注: 當然也可用伴隨矩陣的行列式性質 |a*| = |a|^(n-1) = |a|^2 = (-2)^2 = 4.
3. 若a是可逆矩陣a的特徵值, 則對多項式g(x), g(a)是g(a)的特徵值
這裡 g(x) = x^2-2x+1, g(a)=a^2-2a+e
所以 g(a)=a^2-2a+e 的特徵值為 g(-1),g(1),g(2), 即 4,0,1
所以 |a^2-2a+e| = 4*0*1 = 0
特徵值是線性代數中的一個重要概念。在數學、物理學、化學、計算機等領域有著廣泛的應用。設 a 是n階方陣,如果存在數m和非零n維列向量 x,使得 ax=mx 成立,則稱 m 是a的一個特徵值(characteristic value)或本徵值(eigenvalue)。
非零n維列向量x稱為矩陣a的屬於(對應於)特徵值m的特徵向量或本徵向量。
求矩陣的全部特徵值和特徵向量的方法如下:
第一步:計算的特徵多項式;
第二步:求出特徵方程的全部根,即為的全部特徵值;
第三步:對於的每一個特徵值,求出齊次線性方程組:
的一個基礎解系,則的屬於特徵值的全部特徵向量是
(其中是不全為零的任意實數).
[注]:若是的屬於的特徵向量,則也是對應於的特徵向量,因而特徵向量不能由特徵值惟一確定.反之,不同特徵值對應的特徵向量不會相等。
2樓:等待楓葉
|^|a*|等於4。|a^2-2a+e|等於0。
解:因為矩陣a的特徵值為λ1=-1,λ2=1,λ3=2,那麼|a|=λ1*λ2*λ3=-1*1*2=-2。
又根據|a*| =|a|^(n-1),可求得 |a*|= |a|^2 = (-2)^2 = 4。
同時根據矩陣特徵值性質可求得a^2-2a+e的特徵值為η1、η2、η3。
則η1=(λ1)^2-2λ1+1=4,η1=(λ2)^2-2λ2+1=0,η3=(λ3)^2-2λ3+1=1,
則|a^2-2a+e|=η1*η2*η3=4*0*1=0
即|a*|等於4。|a^2-2a+e|等於0。
3樓:匿名使用者
|此題考查特徵值的性質
用常用性質解此題:
1. a的行列式等於a的全部特徵值之積
所以 |a| = -1*1*2 = -2
2. 若a是可逆矩陣a的特徵值, 則 |a|/a 是a*的特徵值所以a*的特徵值為 2,-2,-1
所以|a*| = 2*(-2)*(-1) = 4.
注: 當然也可用伴隨矩陣的行列式性質 |a*| = |a|^(n-1) = |a|^2 = (-2)^2 = 4.
3. 若a是可逆矩陣a的特徵值, 則對多項式g(x), g(a)是g(a)的特徵值
這裡 g(x) = x^2-2x+1, g(a)=a^2-2a+e所以 g(a)=a^2-2a+e 的特徵值為 g(-1),g(1),g(2), 即 4,0,1
所以 |a^2-2a+e| = 4*0*1 = 0
4樓:迮微蘭盛卿
^-2,2,5,把原來的特徵值帶入方程即可。
第一個理解,設v是a的對應特徵值a的特徵向量,那麼bv=(a^2+2a+-1)v,v也是b的對應於a^2+2a+-1的特徵向量。從而因為a有個特徵值,對應三個特徵向量v1,v2,v3,所以我們也找到了b的三個特徵向量,對應的特徵值可以算出。
第二個理解,從矩陣看,a可以對角化,即存在可逆陣p使得,pap^為對角陣,對角線元素為-1,1,2,從而你可以計算pbp^也是個對角陣,(注意,pa^2
p^=pap^pap^,
簡單)對角線元素可以輕易
算出。這兩個解釋本質是一樣的
5樓:大鋼蹦蹦
||||(a*)a=|a|e
同取行列式
|(a*)a|=||a|e|
|(a*)|*|a|=||a|e|=|a|^3|a*|=|a|^2=(-1*1*2)^2=4|a^2-2a+e|=|(a-e)^2|=|a-e|^2a-e的特徵值是:-2,0,1
所以|a-e|=0
|a^2-2a+e|=0
3階方陣a的特徵值為1,-1,2,則|a^2-2e|=
6樓:匿名使用者
由特徵值的定義有
aα=λα,α≠0 (λ為特徵值,α為特徵向量)則有a^2α=a(λα)=λaα=λ^2α即有(a^2-2e)α=(λ^2-2)α
也就是說如λ是a的特徵值,那麼λ^2-2就是a^2-2e的特徵值所以特徵值為-1,-1,2
則所求矩陣的行列式的值為其特徵值的乘積,結果為 2
7樓:匿名使用者
^det(a-2e)=0
ax=2x
a^2 x=a(2x)=2ax=2 2x=4x(a^2 -2e)x=2x
存在y,x y^t=e
(a^2 -2e)x y^t=2x y^tdet(a^2 -2e)det(x y^t)=det(2x)=2det(x y^t)
det(a^2 -2e)det(e)=2det(e)det(a^2 -2e)=2#
8樓:同意以上條款
因為特徵值是2,則|a-2e|=0,所以a^2-2e+e^2-e^2=(a-e)^2-e^2=(a-e+e)(a-e-e)=a(a-2e)=0
設3階矩陣a的特徵值為-1,1,-2求|(2a)∧*+3a-2e| 10
9樓:匿名使用者
答案bai為1404。
解題過程如下圖du:
設 a 是n階方陣zhi
,如果存在數m和非零
daon維列向量 x,使得內 ax=mx 成立,則稱 m 是矩容陣a的一個特徵值(characteristic value)或本徵值(eigenvalue)。
性質性質1:n階方陣a=(aij)的所有特徵根為λ1,λ2,…,λn(包括重根),則:
性質2:若λ是可逆陣a的一個特徵根,x為對應的特徵向量,則1/λ 是a的逆的一個特徵根,x仍為對應的特徵向量。
性質3:若 λ是方陣a的一個特徵根,x為對應的特徵向量,則λ 的m次方是a的m次方的一個特徵根,x仍為對應的特徵向量。
性質4:設λ1,λ2,…,λm是方陣a的互不相同的特徵值。xj是屬於λi的特徵向量( i=1,2,…,m),則x1,x2,…,xm線性無關,即不相同特徵值的特徵向量線性無關。
10樓:匿名使用者
利用a的伴隨陣與逆矩陣的關係可以如圖先求出這個矩陣的三個特徵值,再相乘得到行列式的值。
設a為3階方陣,特徵值為1,2,-3,求a^2-3a+a^-1+2e的特徵值,及|a^2-3a+a
11樓:我的寶貝
設λ是a的特徵值,那麼有f(a)的特徵值就是f(λ),這樣可以算出a^2-3a+a^-1+2e的特徵值,那麼就可得到行列式了
已知三階矩陣A的特徵值為1,1,2,矩陣BA3A
因為b a 3a 自2 所以2 e b e a0 2e 3a 4e b e a 4e 3a 10e b 2e a 5e 3a 又a的特徵值為 1,1,2 所以det 2e b 0 det 4e b 0 det 10e b 0 所以特徵值 為 1,1,2 所以b的特徵值為 2,4,10 所以detb ...
已知三階矩陣A的特徵值為11,21,32,設矩
設 是a的任du意特徵值,則由b a3 5a2,知zhib的特徵值為 dao 3 5 2 由三階矩回陣a的特徵值為 1 1,答 2 1,3 2,得 b的特徵值為 4,6,12 detb 4?6 12 288 設三階矩陣a的特徵值為 1 1,2 1,3 2,矩陣b 2a2 2a 3e,求矩陣b的特徵值...
已知三階矩陣A的特徵值為1,1,2,則BA32A
已知三階矩陣a有特徵值k1,k2,k3,矩陣b f a 這裡f a 是關於a的多項式,如f a a 3 2a 2,求 b 引理 方陣a有特徵值版k,對應於特權徵向量 f a 是關於a的多項式,則 f a 的有對應於 的特徵值f k 引理之證明 設a的特徵值k對應於特徵向量 即有a k 故aa ka ...