1樓:遠巨集
dz是先對x求偏導,再對y求偏導,再相加;
dz = z'(
回x) dx + z'(y) dy = ydx +xdy其中z'(x)是z對x求偏導數,那個公式字答符不太好顯示,就是和dz/dx對應的那個偏的。
擴充套件資料:如果函式z=f(x, y) 在(x, y)處的全增量δz=f(x+δx,y+δy)-f(x,y)可以表示為:
δz=aδx+bδy+o(ρ),
其中a、b不依賴於δx, δy,僅與x,y有關,ρ趨近於0(ρ=√[(δx)2+(δy)2]),此時稱函式z=f(x, y)在點(x,y)處可微分,aδx+bδy稱為函式z=f(x, y)在點(x, y)處的全微分,記為dz即
dz=aδx +bδy
該表示式稱為函式z=f(x, y) 在(x, y)處(關於δx, δy)的全微分。
2樓:小肥肥啊
dz是先對du
zhix求偏
導,再對y求偏導,再相加;
例如,dao對回x求偏導的時候,y就看做常數,同答
理對y求偏導的時候x看做是常數。
dz=ydx+xdy
代入(2,1)
dz=dx+2dy
擴充套件資料:
如果函式z=f(x, y) 在(x, y)處的全增量
δz=f(x+δx,y+δy)-f(x,y)
可以表示為
δz=aδx+bδy+o(ρ),
其中a、b不依賴於δx, δy,僅與x,y有關,ρ趨近於0(ρ=√[(δx)2+(δy)2]),此時稱函式z=f(x, y)在點(x,y)處可微分,aδx+bδy稱為函式z=f(x, y)在點(x, y)處的全微分,記為dz即
dz=aδx +bδy
該表示式稱為函式z=f(x, y) 在(x, y)處(關於δx, δy)的全微分。
定理定理1
如果函式z=f(x,y)在點p0(x0,y0)處可微,則z=f(x,y)在p0(x0,y0)處連續,且各個偏導數存在,並且有f′x(x0,y0)=a,f′y(x0,y0)=b。
定理2若函式z=f(x,y)在點p0(x0,y0)處的偏導數f′x,f′y連續,則函式f在點p0處可微。
3樓:f謂票
由函式z=xy,得
zx=1y
,zy=?xy
∴dz=zxdx+zydy=1
ydx?xydy
4樓:匿名使用者
這麼簡單個問題真不知道這些兄弟都回答了個啥。
dz = z'(x) dx + z'(y) dy = ydx +xdy
其中z'(x)是z對x求偏導數,那個公式字元不太好顯示,就是和dz/dx對應的那個偏的。
5樓:鳶梨的小布丁
dz是先對x求偏導,再對y求偏導,再相加;
例如,對x求偏導的時候,y就看做常數,同理對y求偏導的時候x看做是常數。
dz=ydx+xdy
代入(2,1)
dz=dx+2dy
6樓:蓶愛心跳
z=x^y
z'=yx^(y-1)
高等數學中,全微分求原函式全微分方程如何求原函式
aq ax ap ay條件滿足了積分與路徑無關實際上求u x,y 的時候u x,y x0到x p x,y0 dx y0到y q x,y dy 是取了一條特殊的路徑,即先x方向的線段再y方向的線段 從 x0,y0 到 x,yo 再從 x,yo 到 x,y 所以對x積分時常量y用確切數字y0代,而對y積...
全增量全微分一點座標函式值對不對
全增量就是代入來增量後 再減自去函式值,得到的量 z xy x2 y2 那麼求出z x和z y 再代入即可 這裡就是x 2.01,y 1.03代入 再減去x 2,y 1時得到的值,自己用計算器算一下吧 全增量和全微分該怎麼求?全微分是先對x求導,所得乘d x 在對y求導,所得乘d y 再把兩個先加就...
已知偏導數求原函式,全微分方程如何求原函式
v先對x積分 v x,y vdx 2xy x 2 y 2 2 dx y x 2 y 2 2 d x 2 y 2 y x 2 y 2 c y 其中 c y 為關於y的待定一元函式。v x,y 再對 版y求偏導數 並令權 dv dy x 2 y 2 2y 2 x 2 y 2 2 c y x 2 y 2 ...