求不定積分1(5 3cosx)dx要詳細過程哈

2021-03-12 16:46:59 字數 1636 閱讀 2688

1樓:

令x=2u,則:u=x/2,dx=2du.

∴∫[1/(3+cosx)]dx

=2∫[1/(3+cos2u)]du

=2∫{1/[3+2(cosu)^2-1]}du

=2∫{1/[2+2(cosu)^2]}du

=∫{1/[1+(cosu)^2]du

=∫{1/[2(cosu)^2+(sinu)^2]}du

=∫{1/[2+(tanu)^2]}[1/(cosu)^2]du

=(1/2)∫{1/[1+(1/2)(tanu)^2]}d(tanu)

=(√2/2)∫{1/[1+(1/2)(tanu)^2]}d[(1/√2)tanu]

=(√2/2)arctan[(1/√2)tanu]+c

=(√2/2)arctan[(√2/2)tan(x/2)]+c

不定積分的公式

1、∫ a dx = ax + c,a和c都是常數

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1

3、∫ 1/x dx = ln|x| + c

4、∫ a^x dx = (1/lna)a^x + c,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + c

6、∫ cosx dx = sinx + c

7、∫ sinx dx = - cosx + c

8、∫ cotx dx = ln|sinx| + c = - ln|cscx| + c

2樓:超過2字

解答如圖

前面給的三個公式稱「萬能公式」

求不定積分 ∫(cosx)的三次方dx。 要求:要有最詳細的過程,不要簡寫

3樓:樹木愛水閏

一、詳細過程如下

∫cos³xdx=∫cos²xdsinx=∫(1-sin²x)dsinx=∫dsinx-∫sin²xdsinx=sinx-sin³x/3+c

二、拓展資料

關於不定積分

1、在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。

2、不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。

3、解釋:根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:

定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計算關係。一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。

4、性質:

4樓:星魂

∫cos³xdx=∫cos²xdsinx=∫(1-sin²x)dsinx=∫dsinx-∫sin²xdsinx=sinx-sin³x/3+c

5樓:莞爾一笑之後

∫(1-sinx^2)d(sinx)=sinx-1/3sinx^3

6樓:匿名使用者

=sinx-1/3sinx^3

求不定積分

這個事有理函式的積分,書上應該介紹了一套方法的。設1 x 2 1 x a x b x 2 c x 1 則右邊 ax 2 ax bx b cx 2 x 2 x 1 a c x 2 a b x b x 2 x 1 所以a c a b 0,b 1 所以a 1,b 1,c 1 原式 dx x dx x 2 ...

求不定積分問題不定積分的小問題

詳細過程如圖rt所示,希望能幫到你解決問題 secx tanx tanx 1 2 sinxd 1 cos 2x 1 2 sinx cos 2x 1 cos 2xdsinx sinx 2cos 2x 1 2 1 1 sin 2x dsinx sinx 2cos 2x 1 2 1 1 sinx 1 1 ...

求不定積分問題,不定積分的小問題

錯了,第二個等號後的式子中間應該為加號 正確過程如圖 其中c為常數 求不定積分問題?1 x 2 3x 2 dx 1 6 d 2 3x 2 2 3x 2 1 3 2 3x 2 c 2 let x tanu dx secu 2 du xarctanx 1 x 2 3 2 dx u.tanu secu 3...