1樓:匿名使用者
a為0時,x不能取0所以是斷開的直線
2樓:匿名使用者
有斷點(0,0),0的0次沒有意義,相當於2條射線。請採納
3樓:happy春回大地
因為x不等於0,把(0,1)點摳出來
下列命題中正確的是( ) a.當α=0時函式y=x α 的圖象是一條直線 b.冪函式的圖象都經過(0,
4樓:廬嵭
當α=0時函式y=xα 的圖象是一條直線除去(0,1)點,故a錯誤;
冪函版數的圖象都經過(權1,1)點,當指數大於0時,都經過(0,0)點,故b錯誤;
若冪函式y=xα 是奇函式,且a>0時,y=xα 是定義域上的增函式,a<0時,y=xα 在(-∞,0)及(0,+∞)上均為減函式,故c錯誤;
由冪函式的性質,冪函式的圖象一定過第一象限,不可能出現在第四象限,故d正確故選d
指數函式冪函式的區別
5樓:達豐
1、自變數x的位置不同。
指數函式,自變數x在指數的位置上,y=a^x(a>0,a 不等於 1)。
冪函式,自變數 x 在底數的位置上,y=x^a(a 不等於 1). a 不等於 1,但可正可負,取不同的值,影象及性質是不一樣的。
2、性質不同。
指數函式性質:
當 a>1 時,函式是遞增函式,且 y>0;
當 00。
冪函式性質:
正值性質:
當a>0時,冪函式有下列性質:
a、影象都經過點(1,1)(0,0);
b、函式的影象在區間[0,+∞)上是增函式;
c、在第一象限內,a>1時,導數值逐漸增大;a=1時,導數為常數;0負值性質:
當a<0時,冪函式有下列性質:
a、影象都通過點(1,1);
b、影象在區間(0,+∞)上是減函式;(內容補充:若為x-2,易得到其為偶函式。利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此)。
c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0。
零值性質:
當a=0時,冪函式有下列性質:
a、y=x0的影象是直線y=1去掉一點(0,1)。它的影象不是直線。
3、值域不同。
指數函式的值域是(0,+∞),冪函式的值域是r。
6樓:匿名使用者
區別:這兩個完全是不同的函式。
1、定義不同,從兩者的數學表示式來看,兩者的未知量x的位置剛好互換。
指數函式:自變數x在指數的位置上,y=a^x(a>0,a不等於1),當a>1時,函式是遞增函式,且y>0;當00.
冪函式:自變數x在底數的位置上,y=x^a(a不等於1)。a不等於1,但可正可負,取不同的值,影象及性質是不一樣的。
2、影象不同:指數函式的圖象是單調的,始終在
一、二象限,經過(0,1)點;冪函式需要具體問題具體分析。
3、性質不同
冪函式性質:1、正值性質即當α>0時,冪函式y=xα有下列性質:a、影象都經過點(1,1)(0,0);b、函式的影象在區間[0,+∞)上是增函式;c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小,趨近於0;
2、負值性質即當α<0時,冪函式y=xα有下列性質:a、影象都通過點(1,1);b、影象在區間(0,+∞)上是減函式;(內容補充:若為x-2,易得到其為偶函式。
利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此)。c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0。
3、零值性質當α=0時,冪函式y=xa有下列性質:y=x0的影象是直線y=1去掉一點(0,1)。它的影象不是直線。
指數函式性質:指數函式的定義域為r,這裡的前提是a大於0且不等於1。對於a不大於0的情況,則必然使得函式的定義域不連續,因此我們不予考慮,同時a等於0函式無意義一般也不考慮。
擴充套件資料
冪的比較常用方法:1、做差(商)法:a-b大於0即a大於b a-b等於0即a=b a-b小於0即a小於b 步驟:
做差—變形—定號—下結論 ;a\b大於1即a大於b a\b等於1即a等於b a/b小於1即a小於b (a,b大於0)2、函式單調性法;3、中間值法:要比較a與b的大小,先找一箇中間值c,再比較a與c、b與c的大小,由不等式的傳遞性得到a與b之間的大小。
7樓:home暮光青檸
區別:1、
自變數①指數函式的自變數為指數。
②冪函式的自變數為底數。
2、性質
①指數函式過定點(0,1),值域為(0,+∞),定義域為r(即實數)。
②冪函式過定點(1,1)通常包括正比例函式,二次函式,三次函式,反比例函式和指數函式。(即只討論a=1,2,3,-1,二分之一)
3、表示式
①指數函式:y=a的x方 (a>1時為增函式,0<a<1時為減函式,a=1時為常數函式)
②冪函式;y=x的a方(a=1,2,3,-1,二分之一),其中y=x²是偶函式(即a=2),其它是奇函式
區別方法
觀察函式的自變數 x 所在的位置,x 在指數位置就是指數函式,x 在底數位置就是冪函式。
8樓:雍寒縱飛捷
①冪函式:y=x^μ(μ≠0,μ為任意實數)定義域:μ為正整數時為(-∞,+∞),μ為負整數時是(-∞,0)∪(0,+∞);μ=(α為整數),當α是奇數時為(-∞,+∞),當α是偶數時為(0,+∞);μ=p/q,p,q互素,作為的複合函式進行討論。
略圖如圖2、圖3。
②指數函式:y=a^x(a>0,a≠1),定義成為(-∞,+∞),值域為(0,+∞),a>0時是嚴格單調增加的函式(即當x2>x1時,),0<a<1時是嚴格單減函式。對任何a,影象均過點(0,1),注意y=ax和y=()x的圖形關於y軸對稱。
如圖4。
③對數函式:y=logax(a>0),稱a為底,定義域為(0,+∞),值域為(-∞,+∞)。a>1時是嚴格單調增加的,0<a<1時是嚴格單減的。
不論a為何值,對數函式的圖形均過點(1,0),對數函式與指數函式互為反函式。如圖5。
以10為底的對數稱為常用對數,簡記為lgx。在科學技術中普遍使用的是以e為底的對數,即自然對數,記作lnx。
9樓:零午風尚
^冪函式與指數函式的區別:指數函式:自變數 x 在指數的位置上,y=a^x(a>0,a 不等於 1)性質:
當 a>1 時,函式是遞增函式,且 y>0;
當 00. 2.
函式影象:
冪函式:自變數 x 在底數的位置上,y=x^a(a 不等於 1). a 不等於 1,但可正可負,取不同的值,影象及性質是不一樣的。
高中數學裡面,冪函式主要要掌握 a=-1、2、3、1/2 時的影象即可。其中當 a=2 時, 函式是過原點的二次函式。 其他 a 值的影象可自己通過描點法畫下並瞭解下基本影象的走向即可。
性質: 根據圖象,冪函式性質歸納如下:
(1)所有的冪函式在(0,+∞)都有定義,並且圖象都過點 (1,1); (2)當 a>0 時,冪函式的圖象通過原點,並且在區間[0,+ ∞)上是增函式. 特別地,當 a>1 時,冪函式的圖象下凸;當 0(3)當 a<0 時,冪函式的圖象在區間(0,+∞)上是減函式.在第一象限內, 當 x 從右邊趨向原點時,圖象在 y 軸右方無限地逼近 y 軸正半軸,當 x 趨 於+∞時,圖象在軸 x 上方無限地逼近軸 x 正半軸。 指出:此時 y=x0=1;定義域為(-∞,0)∪(0,+∞),特別強調, 當 x 為任何非零實數時,函式的值均為 1,影象是從點(0,1)出發,平行於 x 軸的兩條射線,但點(0,1)要除外。
10樓:天使的星辰
指數函式:自變數x在指數的位置上,y=a^x(a>0,a不等於1) ,性質比較單一,當a>1時,函式是遞增函式,且y>0; 當00.
2.冪函式:自變數x在底數的位置上,y=x^a(a不等於1). a不等於1,但可正可負,取不同的值,影象及性質是不一樣的。
11樓:燕山少公保
比如一個函式的形式為y=a^b,y是因變數,如果a是自變數,b是常數就是冪函式,如果b是自變數,a是常數就是指數函式。
12樓:柯南一夢
指數函式冪函式有以下區別:
函式表示式不同。冪函式表示為y=x^a,而指數函式表示為y=a^x(a>0,且a≠1)。
定義域和值域不同。冪函式的定義域和值域隨著a的取值不同而變化,而指數函式的定義域恆為r,值域恆為(0,+∞)
增長率不同。指數函式影象的增長比冪函式快的多,所以有「指數**」的說法。
函式性質不同。冪函式可能是奇函式或者偶函式,而指數函式永遠是非奇非偶函式。
13樓:仙人鳴人
^區別方法:觀察函式的自變數 x 所在的位置,x 在指數位置就是指數函式,x 在底數位置就是冪函式。
形如 y=a^x (a>0且a≠1) (x∈r) 的函式叫指數函式。
性質:1. 定義域和值域
x ∈ r,y >0,影象在 x 軸上方
2. 單調性
a>1 時指數函式 y=a^x 是增函式
00時,冪函式 y=x^α 有下列性質:
a、影象都經過點(1,1)(0,0);
b、函式的影象在區間 [0,+∞) 上是增函式;
c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小,趨近於0;
a=1 時即為一次函式 y=x(直線)
a=2 時即為二次函式 y=x²(拋物線)
α 取負值
當α<0時,冪函式 y=x^α 有下列性質:
a、影象都通過點(1,1);
b、影象在區間(0,+∞)上是減函式;若為x^(-2),易得到其為偶函式。利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此。
c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0。
a=-1 時即為反比例函式 y=1/x(雙曲線)
α 取零
當 α=0 時,冪函式 y=x^a 有下列性質:
y=x^0 的影象是直線y=1去掉一點(0,1),是兩條射線,不是連續的直線(即中間有空洞)。
14樓:匿名使用者
指數函式形式y=a^x(a>0且a≠1) (x∈r)
冪函式,形如y=x^a(a為常數)的函式。
從以上可以看出指數函式的自變數在指數位置。冪函式的自變數在底數位置。這是最大的區別。
高中數學 函式奇偶性,高中數學常見函式的奇偶性
1 f 1 1 f 1 f 1 則f 1 f 1 f 1 所以f 1 0 f 1 1 f 1 f 1 則f 1 f 1 f 1 所欲f 1 0 當x不等於0時 f 1 f 1 x x f 1 x f x 0 所以f 1 x f x x不等於0 2 因為 f x f 1 x f 1 f x 所以f x...
高中數學函式的單調性是什麼意思高中數學函式的單調性什麼意思。才開始上補習班,完全不懂。有個人給我講講。做題的時候無從下手。
如果函式在其定義域內隨自變數x的增加而增加,則為嚴格單調增加 而如果隨自變數x的增加而減少,則為嚴格單調減少.這兩類函式即為單調函式。談單調性要看區間,即要看x取值範圍,在某段範圍內y值隨x增大而逐漸增大,那該函式在這段區間就是單調遞增,反之 如果y在x取任意值時都隨x增大而增大,那該函式就是單調遞...
高中數學函式的奇偶性與週期性,高中數學中的函式的奇偶性判斷和週期性計算有什麼通俗
f 2x 1 是偶函來數,說明函式f 2x 1 的對稱軸是源x 0f 2 x 1 2 相當於 把baif 2x 的圖du像向zhi左平移了1 2所以y f 2x 1的影象是把y f 2x 1 的影象向右平移1 2,再向上平移1 它的對稱軸dao是 x 1 2選擇d 高中數學中的函式的奇偶性判斷和週期...