函式f x 在x x0處可導則連續,但若f x 在x x0處左右導數都存在但不相等,如何具體證明其

2021-04-21 14:42:03 字數 3379 閱讀 6131

1樓:匿名使用者

bai如何具體證明其在dux=x0處也zhi連續。

題目說法有誤dao。

如果f(x)在x=x0處可導則連續,

那麼x=x0處的左右導數都存在必然相等。

函式f(x)在x=x0處可導則連續,但若f(x)在x=x0處左右導數都存在但不相等,如何具體證明其在x=x0處也連續。

2樓:jz—大魚

設右導數f'(x0)=lim(h→

bai0+)[f(x0+h)-f(x0)]/h=a則du[lim(h→0+)f(x0+h)-f(x0)]/lim(h→0+)h=a

∵lim(h→0+)h=0

∴lim(h→0+)f(x0+h)-f(x0)=0lim(h→0+)f(x0+h)=x0

即f(x)在zhix0處右極dao限回

為f(x0)

同理設左導數為f'(x0)=lim(h→0-)[f(x0+h)-f(x0)]/h=b

則lim(h→0-)f(x0+h)-f(x0)=0f(x)在x0處左極限為f(x0)

f(x)在x0出左右極限存在切相等,答所以在x0處連續

3樓:匿名使用者

連續的證明不是用導數來證明的,而是根據

極限limf(x)=f(x0) (x趨向x0)來證明的比如f(x)=|x|

左導數=-1,右導數=1不相等,但

證連續只要

看lim|x|是否為0即可!

4樓:匿名使用者

證明連續就要證明左極限等於右極限即可

函式f(x)在x=x0處左右導數均存在,則f(x)在x=x0處連續,為什麼。

5樓:

左導數存在左連續,右導數存在右連續

左右導數均存在,左右均連續,所以 f(x)在x=x0處連續

6樓:betsy如夢令

f(x)在x0處連續的充分必要條件是f(x)在x0既左連續又右連續,這個是連續的定義

如果函式f(x)在點x0處可導,則它在點x0處必定連續.該說法是否正確

7樓:答疑老度

這是正確的。

如果它在點x0處連續,則函式f(x)在點x0處必定可導。錯誤,比如f(x)=x的絕對值,在xo=0時不連續,

因為它的左右極限不相等。

導數的求導法則:

由基本函式的和、差、積、商或相互複合構成的函式的導函式則可以通過函式的求導法則來推導。基本的求導法則如下:

1、求導的線性:對函式的線性組合求導,等於先對其中每個部分求導後再取線性組合。

2、兩個函式的乘積的導函式:一導乘二+一乘二導。

3、兩個函式的商的導函式也是一個分式:(子導乘母-子乘母導)除以母平方。

4、如果有複合函式,則用鏈式法則求導。

導數求導口訣:

1,對倒數(e為底時直接倒數,a為底時乘以1/lna)。

2,指不變(特別的,自然對數的指數函式完全不變,一般的指數函式須乘以lna)。

3,正變餘,餘變正。

4,切割方(切函式是相應割函式(切函式的倒數)的平方)。

5,割乘切,反分式。

6,常為零,冪降次。

8樓:冰洌

如果它在點x0處連續,則函式f(x)在點x0處必定可導。錯誤,比如f(x)=x的絕對值,在xo=0時不連續,因為它的左右極限不相等

若f(x)在x=x0處可導,則|f(x)|在x=x0處不一定可導。為什麼?

9樓:匿名使用者

舉個例子f(x)=x在0處可導但|x|在0處不可導,因為0處左右導數極限不相等

f(x)加絕對值後,可以看成是一個分段函式了,在兩段的銜接處左右導數極限是不一定相等的,相等的時候就可導,不相等的時候就不可導

10樓:匿名使用者

例如f(x)=x在x=x0處可導|f(x)|=|x|在x=x0處不可導

f(x)在x=0處可導,則f'(x)在x=0處一定連續嗎

11樓:

考研數學上遇到類似的問題,現在明白了。

第一句:f(x)在x=0處可導,由導數定義知,f'+(0)=f'-(0),也就是在x=0處的左右導數相等。

第二句:f'(x)在x=0處連續,由連續的定義知,f'+(0)=f'-(0)=f'(0),相當於把導函式看成普通函式,在x=0處的左極限=右極限=這個點的函式值。

這兩者都是導函式的左右極限相等,但是前者不管導函式在x=0處存不存在,後者是導函式在x=0處一定存在且與左右極限相等。

通常用分段函式舉反例:

f(x)=x²sin(1/x) x≠0 ,

f(x)=0 x=0,

這樣,f(x)在x=0處連續,且f(x)在x=0處的導數為 f'(0)=0,而導函式f'(x)=2xsin(1/x)-cos(1/x) 中,f'+(0)與f'-(0)不存在,所以f(x)在x=0處可導。但是f'(x)在x=0處不連續。

綜上:f(x)在x=0處可導,f'(x)在x=0處不一定連續。

12樓:匿名使用者

不一定經典反例f(x)=x^2sin(1/x),定義f(0)=0。

f'(0)=0,

當x趨於0時

f'(x)=2xsin(1/x)-cos(1/x)極限不存在。

13樓:匿名使用者

大佬們,是不是這種意思,導函式連續要求,f'(0-)=f'(0+)=f'(0)(f'(0)也就是導函式在這點的定義),而函式在此點可導,只要求f'(0-)=f'(0+)即可,因此二者並無聯絡。

14樓:匿名使用者

對,對---------可導一定連續。

15樓:匿名使用者

是的,可導一定連續,連續不一定可導。

16樓:哈哈哈

f(x)可導,代表的是f(x)連續,如果要f'(x)連續,則應該有「f'(x)可導」這個條件,f'(x)可導即f(x)有二階導函式。

17樓:輕塵雨隨

這個問題我在考研的數學裡面看到了,也很疑惑,有個題目是這樣的當x≠0時f(x)=x^(4/3)sin(1/x),當x=0時,f(x)=0,答案說此f(x)在x=0處可導,然後另一個一樣的題說此f'(x)在x=0處不連續,我就納悶兒了,f'(x)在x=0處可導不就是存在f'(0)嗎?而f'(0)存在的條件不就是左右極限f'(0-)=f'(0+)嗎?既然f'(0-)=f'(0+)了不就是f'(x)在x=0上連續了嗎?

樓上的人好像沒踩到你的點,樓主現在會了嗎?能給我解釋下下嗎??我超疑惑。。。

若fx在處可導,則fx在xx0處

c,如y x處處可導,但是 x 在x 0處連續不可導 f x x 在x 0處為什麼不可導 5 x 0時,f x x 則其導 數為1x 0時,f x x,則其導數為 1其導數是不連續的,所以,在x 0時,不可導,因為影象不連續有折點。常用導數公式 1 y c c為常數 y 0 2 y x n y nx...

若函式fx在xx0處存在二階導數,則fx在xx

在x x0處存在二階導數,只能保證f x 的一階導數在此點連續 設函式f x 在x x0處二階導數存在,且f x0 0,f x0 0,則必存在 0,使得 因為f x0 0,則在x0的鄰域內f x 單調減。又f x0 0 所在在x0的左鄰域內f x 0,在x0的右鄰域內f x 0所以f x 在x0的左...

若函式fx在點X0處可導,則fx在點X0處A

c.連續但未必可導.如f x x,f x x x,不可導 函式f x 在點x0處可導,則 f x 在點x0處 c.連續但未必可導.如f x x,f x x x,不可導 c,x和絕對值x就可以說明 c。例如函式f x x x0,在x0處f x 可導,而 f x 不可導。望採納。如果函式f x 在點x0...