數學一元二次方程求解啊

2021-12-27 17:47:00 字數 5405 閱讀 5848

1樓:匿名使用者

3x²+2(根號2-1)x-[3-2根號2]=03x²+2(√2-1)x-(√2-1)^2=0(3x-(根號2-1)(x+√2-1) =0x1=-√2+1

x2=(根號2-1)/3

2樓:邗水

一元二次方程

人教版9年級數學上冊會學到,冀教版9年級數學上冊第二十九章會學到。

定義:含有一個未知數,並且未知數的最高次數是2的整式方程,這樣的方程叫做一元二次方程。

由一次方程到二次方程是個質的轉變,通常情況下,二次方程無論是在概念上還是解法上都比一次方程要複雜得多。

一般形式:ax^2+bx+c=0 (a≠0)

一般解法有四種:

⒈公式法(直接開平方法)

⒉配方法

⒊公式法

⒋因式分解法

5.十字相乘法

十字相乘法能把某些二次三項式分解因式。這種方法的關鍵是把二次項係數a分解成兩個因數a1,a2的積a1•a2,把常數項c分解成兩個因數c1,c2的積c1•c2,並使a1c2+a2c1正好是一次項b,那麼可以直接寫成結果:在運用這種方法分解因式時,要注意觀察,嘗試,並體會它實質是二項式乘法的逆過程。

當首項係數不是1時,往往需要多次試驗,務必注意各項係數的符號。

例題例1 把2x^2-7x+3分解因式.

分析:先分解二次項係數,分別寫在十字交叉線的左上角和左下角,再分解常數項,分

別寫在十字交叉線的右上角和右下角,然後交叉相乘,求代數和,使其等於一次項係數.

分解二次項係數(只取正因數):

2=1×2=2×1;

分解常數項:

3=1×3=3×1=(-3)×(-1)=(-1)×(-3).

用畫十字交叉線方法表示下列四種情況:

1 1╳ 2 3

1×3+2×1

=5 1 3

╳ 2 1

1×1+2×3

=7 1 -1

╳2 -3

1×(-3)+2×(-1)

=-51 -3

╳ 2 -1

1×(-1)+2×(-3)

=-7經過觀察,第四種情況是正確的,這是因為交叉相乘後,兩項代數和恰等於一次項係數-7.

解 2x^2-7x+3=(x-3)(2x-1).

一般地,對於二次三項式ax2+bx+c(a≠0),如果二次項係數a可以分解成兩個因數之積,即a=a1a2,常數項c可以分解成兩個因數之積,即c=c1c2,把a1,a2,c1,c2,排列如下:

a1 c1

� ╳a2 c2

a1c2+a2c1

按斜線交叉相乘,再相加,得到a1c2+a2c1,若它正好等於二次三項式ax2+bx+c的一次項係數b,即a1c2+a2c1=b,那麼二次三項式就可以分解為兩個因式a1x+c1與a2x+c2之積,即

ax2+bx+c=(a1x+c1)(a2x+c2).

像這種藉助畫十字交叉線分解係數,從而幫助我們把二次三項式分解因式的方法,通常叫做十字相乘法.

例2 把6x^2-7x-5分解因式.

分析:按照例1的方法,分解二次項係數6及常數項-5,把它們分別排列,可有8種不同的排列方法,其中的一種

2 1╳ 3 -5

2×(-5)+3×1=-7

是正確的,因此原多項式可以用十字相乘法分解因式.

解 6x^2-7x-5=(2x+1)(3x-5)

指出:通過例1和例2可以看到,運用十字相乘法把一個二次項係數不是1的二次三項式因式分解,往往要經過多次觀察,才能確定是否可以用十字相乘法分解因式.

對於二次項係數是1的二次三項式,也可以用十字相乘法分解因式,這時只需考慮如何把常數項分解因數.例如把x^2+2x-15分解因式,十字相乘法是

1 -3

╳ 1 5

1×5+1×(-3)=2

所以x^2+2x-15=(x-3)(x+5).

例3 把5x^2+6xy-8y^2分解因式.

分析:這個多項式可以看作是關於x的二次三項式,把-8y^2看作常數項,在分解二次項及常數項係數時,只需分解5與-8,用十字交叉線分解後,經過觀察,選取合適的一組,即

1 2�╳ 5 -4

1×(-4)+5×2=6

解 5x^2+6xy-8y^2=(x+2y)(5x-4y).

指出:原式分解為兩個關於x,y的一次式.

例4 把(x-y)(2x-2y-3)-2分解因式.

分析:這個多項式是兩個因式之積與另一個因數之差的形式,只有先進行多項式的乘法運算,把變形後的多項式再因式分解.

問:兩上乘積的因式是什麼特點,用什麼方法進行多項式的乘法運算最簡便?

答:第二個因式中的前兩項如果提出公因式2,就變為2(x-y),它是第一個因式的二倍,然後把(x-y)看作一個整體進行乘法運算,可把原多項式變形為關於(x-y)的二次三項式,就可以用十字相乘法分解因式了.

解 (x-y)(2x-2y-3)-2

=(x-y)[2(x-y)-3]-2

=2(x-y) ^2-3(x-y)-2

=[(x-y)-2][2(x-y)+1]

=(x-y-2)(2x-2y+1).

1 -2

╳ 2 1

1×1+2×(-2)=-3

指出:把(x-y)看作一個整體進行因式分解,這又是運用了數學中的「整體」思想方法.

例5 x^2+2x-15

分析:常數項(-15)<0,可分解成異號兩數的積,可分解為(-1)(15),或(1)(-15)或(3)

(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和為2。

=(x-3)(x+5)

總結:①x^2+(p+q)x+pq型的式子的因式分解

這類二次三項式的特點是:二次項的係數是1;常數項是兩個數的積;一次項係數是常數項的兩個因數的和.因此,可以直接將某些二次項的係數是1的二次三項式因式分解:

x^2+(p+q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能夠分解成k=ac,n=bd,且有ad+bc=m 時,那麼

kx^2+mx+n=(ax+b)(cx+d)

a b╳ c d

1、直接開平方法:

直接開平方法就是用直接開平方求解一元二次方程的方法。用直接開平方法解形如(x-m)2=n (n≥0)的

方程,其解為x=m± .

例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11

分析:(1)此方程顯然用直接開平方法好做,(2)方程左邊是完全平方式(3x-4)2,右邊=11>0,所以

此方程也可用直接開平方法解。

(1)解:(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丟解)

∴x=∴原方程的解為x1=,x2=

(2)解: 9x2-24x+16=11

∴(3x-4)2=11

∴3x-4=±

∴x=∴原方程的解為x1=,x2=

2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)

先將常數c移到方程右邊:ax2+bx=-c

將二次項係數化為1:x2+x=-

方程兩邊分別加上一次項係數的一半的平方:x2+x+( )2=- +( )2

方程左邊成為一個完全平方式:(x+ )2=

當b2-4ac≥0時,x+ =±

∴x=(這就是求根公式)

例2.用配方法解方程 3x2-4x-2=0

解:將常數項移到方程右邊 3x2-4x=2

將二次項係數化為1:x2-x=

方程兩邊都加上一次項係數一半的平方:x2-x+( )2= +( )2

配方:(x-)2=

直接開平方得:x-=±

∴x=∴原方程的解為x1=,x2= .

3.公式法:把一元二次方程化成一般形式,然後計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項

係數a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

例3.用公式法解方程 2x2-8x=-5

解:將方程化為一般形式:2x2-8x+5=0

∴a=2, b=-8, c=5

b2-4ac=(-8)2-4×2×5=64-40=24>0

∴x= = =

∴原方程的解為x1=,x2= .

4.因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓

兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個

根。這種解一元二次方程的方法叫做因式分解法。

例4.用因式分解法解下列方程:

(1) (x+3)(x-6)=-8 (2) 2x2+3x=0

(3) 6x2+5x-50=0 (選學) (4)x2-2( + )x+4=0 (選學)

(1)解:(x+3)(x-6)=-8 化簡整理得

x2-3x-10=0 (方程左邊為二次三項式,右邊為零)

(x-5)(x+2)=0 (方程左邊分解因式)

∴x-5=0或x+2=0 (轉化成兩個一元一次方程)

∴x1=5,x2=-2是原方程的解。

(2)解:2x2+3x=0

x(2x+3)=0 (用提公因式法將方程左邊分解因式)

∴x=0或2x+3=0 (轉化成兩個一元一次方程)

∴x1=0,x2=-是原方程的解。

注意:有些同學做這種題目時容易丟掉x=0這個解,應記住一元二次方程有兩個解。

(3)解:6x2+5x-50=0

(2x-5)(3x+10)=0 (十字相乘分解因式時要特別注意符號不要出錯)

∴2x-5=0或3x+10=0

∴x1=, x2=- 是原方程的解。

(4)解:x2-2(+ )x+4 =0 (∵4 可分解為2 ·2 ,∴此題可用因式分解法)

(x-2)(x-2 )=0

∴x1=2 ,x2=2是原方程的解。

5.十字相乘法

可對形如y=x^2+(p+q)x+pq型的式子的因式分解

這類二次三項式的特點是:二次項的係數是1;常數項是兩個數的積;一次項係數是常數項的兩個因數的和。因此,可以直接將某些二次項的係數是1的二次三項式因式分解:

x^2+(p+q)x+pq=(x+p)(x+q)

二元二次方程:含有兩個未知數且未知數的最高次數為2的整式方程。

[編輯本段]附註

一般地,n元一次方程就是含有n個未知數,且含未知數項次數是1的方程,一次項係數規定不等於0;

n元一次方程組就是幾個n元一次方程組成的方程組(一元一次方程除外);

一元a次方程就是含有一個未知數,且含未知數項最高次數是a的方程(一元一次方程除外);

一元a次方程組就是幾個一元a次方程組成的方程組(一元一次方程除外);

n元a次方程就是含有n個未知數,且含未知數項最高次數是a的方程(一元一次方程除外);

n元a次方程組就是幾個n元a次方程組成的方程組(一元一次方程除外);

方程(組)中,未知數個數大於方程個數的方程(組)叫做不定方程(組),此類方程(組)一般有無數個解。

初中數學一元二次方程,初中數學數學一元二次方程。。。

設下調率為x,第一次下調了5000x元,下調到5000 5000x元,第二次下調了 5000 5000x x元,下調到5000 5000x 5000 5000x x元,即4050元,則5000 5000x 5000 5000x x 4050,簡化得5000 1 x 2 4050,解得x 0.1,下調...

一道一元二次方程數學題,一道數學一元二次方程的題目

答 1 把k m 0代入原來方程 m 2 m 2 m 1 m m 0,解得m 1或者m 2,又因為m 2 0,所以m 1 因為k 0,方程 m 2 k m 1 k m 0兩邊同除以k得 m 2 k m 1 m k 0 整理得 m k 1 k 2k m 1 所以y m k 1 k 2k 5 m 1 5...

求解,詳細過程。一元二次方程

用求根公式詳細解答如下,點選放大 回答一,公式法,先判斷德爾塔德大小可以通過 的值來判斷一元二次方程有幾個根 1.當 0時 沒有實數根 2.當 0時 x有兩個相同的實數根 即x1 x2 3.當 0時 x有兩個不相同的實數根 當判斷完成後,若方程有根可根屬於2 3兩種情況方程有根則可根據公式 x b ...