1樓:匿名使用者
sin(-α)=-sinα
cos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
2樓:匿名使用者
同角三角函式的基本關係式
倒數關係: 商的關係: 平方關係:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
(六邊形記憶法:圖形結構「上弦中切下割,左正右餘中間1」;記憶方法「對角線上兩個函式的積為1;陰影三角形上兩頂點的三角函式值的平方和等於下頂點的三角函式值的平方;任意一頂點的三角函式值等於相鄰兩個頂點的三角函式值的乘積。」)
誘導公式(口訣:奇變偶不變,符號看象限。)
sin(-α)=-sinα
cos(-α)=cosα tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈z)
兩角和與差的三角函式公式 萬能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα ·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半形的正弦、餘弦和正切公式 三角函式的降冪公式
二倍角的正弦、餘弦和正切公式 三倍角的正弦、餘弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函式的和差化積公式 三角函式的積化和差公式
α+β α-β
sinα+sinβ=2sin———·cos———
2 2α+β α-β
sinα-sinβ=2cos———·sin———
2 2α+β α-β
cosα+cosβ=2cos———·cos———
2 2α+β α-β
cosα-cosβ=-2sin———·sin———
2 2 1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
2 1
cosα ·sinβ=-[sin(α+β)-sin(α-β)]
2 1
cosα ·cosβ=-[cos(α+β)+cos(α-β)]
2 1
sinα ·sinβ=— -[cos(α+β)-cos(α-β)]
2 化asinα ±bcosα為一個角的一個三角函式的形式(輔助角的三角函式的公式
三角函式誘導公式的口訣(帶說明)
3樓:匿名使用者
奇變偶不變。符號看象限。象限的口訣是,一全正。二正弦,三正切。四餘弦。奇偶指得是二分之kπ。k若是奇數。那三角函式就變了。!~有不懂的接著問/
計算三角函式的時候,例如說要計算sina的值時,與a是正角還是負角有關係嗎?請詳細說明
4樓:匿名使用者
當然了,sin是正弦函式,影象關於零點中心對稱,正負不同就得的值成相反數;cos是餘弦函式,影象關於y軸對稱,正負不同得的值一樣。
三角函式計算公式
公式見下面 三角函式的必背公式包括半形公式,倍角公式,兩角和與差公式,積化和差公式,和差化積公式。sin a 2 1 cosa 2 cos a 2 1 cosa 2 tan a 2 1 cosa 1 cosa 三角函式是數學中屬於初等函式中的超越函式的函式。通常是在平面直角座標系中定義的,其定義域為...
關於所有三角函式的公式整理,求三角函式所有的公式整理以及它們分別的應用
這個比較簡單 你用思維去理解 我給你一個思路 比如和差化積公式 把角a b 同時換成一樣的不就是2倍角公式嗎?半形公式 就是把二倍角換成單倍角嗎?頂多用下角的推廣!sin cos tan cos sin cot 那麼cot tan 1嗎?等等 所有的三角函式都可以推導!不用去死記的!其實數學也就是這...
要所有三角函式誘導公式,三角函式所有的誘導公式,
以下是六個三角函式誘導公式 公式一 設 為任意角,終邊相同的角的同一三角函式的值相等sin 2k sin k z cos 2k cos k z tan 2k tan k z cot 2k cot k z 公式二 設 為任意角,的三角函式值與 的三角函式值之間的關係sin sin cos cos ta...