二元函式連續,能推出二元函式在該定義域內極限存在嗎

2021-03-03 21:08:36 字數 2911 閱讀 1455

1樓:匿名使用者

不一定,雖然是連續的,但是要看定義域。如果定義域是閉區間,則沒有極限。

為什麼二元函式連續推不出偏導數存在?

2樓:斷魂之流觴

(先看最後一句,沒有解決你的問題你再從頭看)你知道二元函式的極限是全

面極限吧,就是面上的極限,可以看二元函式的圖形,二元函式的連續指的是這個面上沒有漏洞沒有裂縫(定義域內),而偏導數的幾何意義你應該是知道的,不懂也沒關係,它存在只能說明函式在x=x0或y=y0

這個線上連續,在面上就不一定了(幾何意義不理解就去翻書吧,孩紙)理解了這些,來看你的問題。

連續推不出偏導數是吧,想想這樣一個面,他連續,有個尖,要求對這個尖上的點求偏(偏導姑且是關於x的吧),問題來了,你知道這個尖上的點關於x的偏導是這點的切線對x軸的斜率(偏導的幾何意義),問題來了!!切線在哪!會有一條以上的情況嗎!

不會,但這點有無數條切線,所以他雖然處處連續,但在這個尖上偏導不存在!。。。

在一元函式裡,連續不一定可導,例如y=|x|在x=0時,有導數嗎?類比過去就好了

老衲盡力了

3樓:花花

給定一個二元函式,連續偏導數存在。

二元函式連續可導可微,最強的一個是偏導數連續,這個可以推出其他幾個。其次是可微,這個可以推出連續,偏導數存在,極限存在。其他三個強度差不多,偏導存在跟連續和極限存在無關,連續能推出極限存在,反之推不出。

設平面點集d包含於r^2,若按照某對應法則f,d中每一點p(x,y)都有唯一的實數z與之對應,則稱f為在d上的二元函式.

且稱d為f的定義域,p對應的z為f在點p的函式值,記作z=f(x,y);全體函式值的集合稱為f的值域.

一般來說,二元函式是空間的曲面,如雙曲拋物面(馬鞍形)z=xy.

連續性:

f為定義在點集d上的二元函式.p0為d中的一點.對於任意給定的正數ε,總存在相應的正數δ,只要p在p0的δ臨域和d的交集內,就有|f(p0)-f(p)|<ε,則稱f關於集合d在點p0處連續.

若f在d上任何點都連續,則稱f是d上的連續函式.

4樓:匿名使用者

看書吧,書上有證明過程,

這不是很重要望採納

書上用求極限存在且相等,在該點領域有定義的方法來證明二元函式連續,問一下能不能用函式在該點可微的方

5樓:上海皮皮龜

解決這抄個問題,關鍵在襲

知道連續與可微的關係。可微bai是要求更高的條件,可du微一定連zhi續。但反之,連續dao不一定可微,這在一般教科書書上都有例子。

在一元函式情況,可能更清楚。多元情況也類似。知道函式在一點可微,連續是不在話下的。

在實踐中許多函式可微性有肯定的結論,當然由此可以推出函式的連續性。當知道函式可微時,這其中的資訊遠比函式在該點連續多得多。

函式在一點連續可以推出該點極限值等於函式值嗎?

6樓:pasirris白沙

對於連續函式定義域內的點來說,極限值就是它的函式值;

反之,函式值就是它的極限值。完全正確,無可挑剔。

.由於平時過度渲染兩個極端概念,而使得很多學生,明明是概念正確,結果卻是惴惴不安,反而被教師越忽悠越糊塗。

.第一個是過於強調了左右極限存在且相等,才算是極限存在。

過於忽略了單側極限也是極限存在,僅僅是單側存在。

左右兩側,沒有共同極限,沒有共同語言,說它不存在,並不否認單側極限的存在。

.第二個更普遍,那就是對奇點、間斷點計算極限,這些點,尤其是奇點,它不在定義域內,當然不能用函式計算!

.如有疑問,歡迎追問,有問必答。

7樓:哈三中董森

可以,這就是連續的定義。

既然二元函式極限存在需要靠所有路徑的趨向來判斷,那如何來證明靠極限來定義的二元函式的連續?

8樓:上海皮皮龜

當變化的點(x,y),與(

a,b)的距離趨向0時函式f(x,y)趨向一個常數a,且a=f(a,b), 則f(x,y)在(a,b)連續。因為此時不管點(x,y)用什麼路徑趨向(a,b),f(x,y)都趨向f(a,b),即在此點連續

給定一個二元函式怎麼判斷是否連續偏導數是否存在

9樓:匿名使用者

二元函式連續可導可微,最強的一個是偏導數連續,這個可以推出其他幾個。其次是可微,這個可以推出連續,偏導數存在,極限存在。其他三個強度差不多,偏導存在跟連續和極限存在無關,連續能推出極限存在,反之推不出。

設平面點集d包含於r^2,若按照某對應法則f,d中每一點p(x,y)都有唯一的實數z與之對應,則稱f為在d上的二元函式.

且稱d為f的定義域,p對應的z為f在點p的函式值,記作z=f(x,y);全體函式值的集合稱為f的值域.

一般來說,二元函式是空間的曲面,如雙曲拋物面(馬鞍形)z=xy.

連續性:

f為定義在點集d上的二元函式.p0為d中的一點.對於任意給定的正數ε,總存在相應的正數δ,只要p在p0的δ臨域和d的交集內,就有|f(p0)-f(p)|<ε,則稱f關於集合d在點p0處連續.

若f在d上任何點都連續,則稱f是d上的連續函式.

10樓:閃亮登場

首先偏導數連續是可微的充分條件,偏導數存在是可微的必要條件,也就是說存在一些偏導數不連續的函式但仍可微,也存在一些偏導數存在的函式但不可微,而可微一定連續(連續不一定可微),所以從偏導數存在是得不出函式連續的,按照上面的分析,你寫的那三條當然都是不能逆向推理的.事實上偏導數連續雖然能推出函式連續,但條件過強,而偏導數存在這個條件又由於太弱從而推不出函式連續,比較「適中」的條件是,偏導數在一點的某個鄰域內有界,則函式在該點連續,這是一個定理.以上說的那些不能推出的,都是有反例的,有興趣的話你可以自己在書上找找.

二元函式zfx,y具有二階連續偏導數是什麼意思是指z

個人理解應該是指無論z先對x再對y的二階偏導還是z先對y再對x的二階偏導,兩者都為連續函式,則兩函式結果相等,而非是單獨的z對x的二階偏導或z對y的二階偏導為連續函式。若z f x,y 具有二階連續偏導數,且f yx c 常數 則f x x,y 因為z f x,y 有二階連續偏導數 所以f xy f...

二元函式在某點連續並且偏導數都存在為什麼不能證明該函式在該點

因為可能有任意一條方向導數不在切平面上,可以認為切平面是二元函式在該點平行x,y軸的切線。後一個我敢說不是充要的 為什麼多元函式在一點處的偏導數存在且連續仍不能證明該函式在該點處可微?多元函式在一點偏導數存在且連續是一定在該點可微的。但如果是函式連續且其偏導數存在就不一定可微了。這裡強調的偏導數連續...

二元函式不可微,那麼偏導數一定不連續嗎

高數中二元函式不可微,那麼偏導數一定不連續嗎是的。是定理 偏導數連續,則可微。的逆否命題。函式不可微,偏導數一定不連續嗎 由於在一點,函式的偏導數存在且連續則函式畢可微。原命題真則其逆否命題也為真,它的逆否命題就是函式不可微則偏導數不連續。所以函式不可微,偏導數一定不連續。在一點函式的偏導數存在且連...