設如果fx在上連續,在0,1內可導,且f

2021-03-03 20:27:51 字數 1417 閱讀 1647

1樓:匿名使用者

存在找特例。三個點座標,連續,得出可能為拋物線。

設,f(x)=-4(x-1/2)^2+1,則f'(x)=-8x+4,-8x+4=1,則x=3/8.

所以存在這樣的點

2樓:茹翊神諭者

建構函式即可

答案如圖所示

設f(x)在[0,1]上連續,在(0,1)內可導,且f(1)=f(1/2)

3樓:匿名使用者

令g(x)=f(x)-x,則g(0)=0,g(1/2)=-1/2,g(1)=0,根

制據介值定理,存在a∈(0,1/2),使

得g(a)=-1/4,存在b∈(1/2,1),使得g(b)=-1/4。再根據羅爾中值定理,存在ξ∈(a,b),使得g'(ξ)=0,也就是f'(ξ)=1。

高數:設f(x)在[0,1]上連續,在(0,1)內可導,且f(0)=0,f(1)=1

4樓:臺溶荀浩思

那裡多寫制了個dx

由積分中值定理bai:存在a∈(0,1)使:(2/πdu)[e^zhif(a)]arctana=1/2,或[e^f(a)]arctana=π/4

設f(x)=arctanxe^f(x),則:f(1)=arctan1e^f(1)=π/4,f(a)=arctanae^f(a)=π/4.

用羅爾定理,存在ζ∈dao(a,1)(當然ζ∈(0,1)),使:f』(ζ)=0

但f『(x)=e^f(x)/(1+x^2)+arctanxe^f(x)*f'(x)

代入得:1/(1+ζ^2)+f'(ζ)arctanζ=0

即:(1+ζ^2)f'(ζ)arctanζ=-1

5樓:

由介bai

值定理, 存在c∈

(0,1), 使duf(c) = a/(a+b).

由lagrange中值定理zhi, 存在daoζ內∈(0,c), 使f'(ζ) = (f(c)-f(0))/(c-0), 即有(a+b)c = a/f'(ζ).

又存在η

容∈(c,1), 使f'(η) = (f(1)-f(c))/(1-c), 即有(a+b)(1-c) = b/f'(η).

於是ζ < η滿足a/f'(ζ)+b/f'(η) = a+b.

設fx在[0,1]上連續在(0,1)內可導且f(0)=f(1)=0

6樓:

建構函式f(x)=x2f(x),則f(x)在[0,1]上連續,在(0,1)內可導,f(0)=f(1)=0,由羅爾定理,存在一點ξ∈(0,1),使f'(ξ)=0。

f'(x)=2xf(x)+x2f'(x)。

所以,2ξf(ξ)+ξ2f'(ξ)=0,所以2f(ξ)+ξf'(ξ)=0。

設函式fx在上連續,0,1內可導,且

函式f x 在 bai 0,1 上連續,du 0,1 內zhi可導,在 2 3,1 內至少存在一點 使dao得 f 1?2 3 12 3f x dx成立,版即權 f 3 12 3f x dx 因為3 12 3f x dx f 0 所以f f 0 因為函式f x 在 0,1 上連續,0,1 內可導,根...

設函式fx在上連續,在0,1內可導,且f

令g x x2e xf x du,zhi則g x 在 0,1 上連續dao,在 回0,1 內可導,且答 g x xe x xf x 2 x f x 因為f 0 f 1 0,由連續函式的零點存在定理可得,c 0,1 使得f c 0,從而g c 0.又因為g 0 0,故對函式g x 在區間 0,c 上利...

設fx在上連續,在0,3內可導,且f

反證法 設不存在baif du 0 則f zhix 在 0,dao3 內遞增版或遞減 遞增時 f 0 f 1 f 2 f 3 1所以f 0 f 1 f 2 3,與條件矛盾所以存在f 0 首先證明存在a 0,3 使得f a 1.由此,f x 在 0,3 上連續,0,3 上可導,且f a f 3 1 利...