若f(x)在(a內可導,且lim f(x) f(x)的導數0下面是x趨於證明 limf(x)0下面是x趨

2021-04-18 01:41:38 字數 2982 閱讀 7752

1樓:午後藍山

lim【f(x)+f(x)的導數】=0下面是x趨於+∞

f(x)=ce^(-x)

2樓:路籮筐

^lim_f(x)=lim_f(x)e^dux/e^zhix由f(x)e^x的導數dao為(f(x)+f'(x))e^x,而e^x的導數為e^x;利用版羅權比達法則,有

lim_f(x)e^x/e^x=lim_[(f(x)+f'(x))e^x]/e^x=lim_f(x)+f'(x)=0

於是lim_f(x)=0

【考研數學】設f(0)=0則f(x)在點x=0可導的充要條件

3樓:電燈劍客

^選b必要性就不談了,如果f'(0)存在四個選項中的極限都存在,只要看充分性。

a. y = 1-cosh ~ h^2/2 >=0,lim f(y)/y * lim(1-cosh)/h^2 = 1/2 * lim f(y)/y 存在,注意y>=0,所以這個只表明f'(0+)存在,但是並不能說明左導數也存在,比如x>=0時f(x)=x,x<0時f(x)=1。

b. y = 1-e^h ~ -h,lim f(y)/y * lim(1-e^h)/h = -lim f(y)/y,這個說明f'(0)存在。

c. y = h-sinh ~ h^3/3,連階數都不對。

d. f在0點的連續性沒有保障,不用談可導,比如f(0)=0,x非零時f(x)=1。

4樓:小霞

f(0)左右導數存在且相等是可導的充分必要條件

f(0)可導,f(0)必需連續

擴充套件資料:

函式f(x)在某一點是否可導,要判斷f(x)在這個點左右導數存在且相等,如果不存在,不可導,如果不相等,也不可導。

例如:f(x)=|x|,在x=0點連續,不可導,因為在x=0的左右導數不相等

導數(derivative),也叫導函式值。又名微商,是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。

導數是函式的區域性性質。一個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。

導數的本質是通過極限的概念對函式進行區域性的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

設函式f(x)在區間[0,1]上具有二階導數,且f(1)>0,lim(趨於0+時)f(x)/x<0

5樓:匿名使用者

這道題能得出兩個點是0的點。

第一個是f(0),用的是保號性,負代換做一下就行了。

第二個就是17年的真題,用的也是保號性,證出(0,0+δ)區域裡有fx<0,f(1)大於0,零點定理,至少存一

6樓:和藹的方法

lim趨於0+,f(x)/x小於0,說明在x趨於0+的鄰域中,x大於0,而f(x)小於0,又因為f1大於0,由連續函式介值定理(或零點定理),知存在一點x使得fx=0,即存在一個實根

7樓:匿名使用者

【詳解1】如bai果對曲線在區間du[a,b]上凹凸zhi的定義比較熟悉dao的話,可以直接內做出判斷.如果對區間容上任意兩點x1,x2及常數0≤λ≤1,恆有f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),則曲線是凸的.顯然此題中x1=0,x2=1,λ=x,則(1-λ)f(x1)+λf(x2)=f(0)(1-x)+f(1)x=g(x),而f((1-λ)x1+λx2)=f(x),故當f''(x)≤0時,曲線是凸的,即f((1-λ)x1+λx2)≥(1-λ)f(x1)+λf(x2),也就是f(x)≥g(x),故應該選c 【詳解2】如果對曲線在區間[a,b]上凹凸的定義不熟悉的話,可令f(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,則f(0)=f(1)=0,且f''(x)=f''(x),故當f''(x)≤0時,曲線是凸的,從而f(x)≥f(0)=f(1)=0,即f(x)=f(x)-g(x)≥0,也就是f(x)≥g(x),故應該選:c.

8樓:小牛人灬

證明不出來我覺得,張宇的書有問題

設f(x)在點x=0的某一鄰域內具有二階連續導數,且limx→0f(x)x=0,證明級數∞n=1f(1n)絕對收斂

9樓:遺棄的紙湮

∵f(x)在點x=0的某一鄰域內具有二階連續導數,即f(x),f'(x),f''(x)在x=0的某一鄰域均連續

且:lim

x→0f(x)x=0

∴f(x)=f(0)=0 lim

x→0f(x)?f(0)x=0

∴f』(0)=0

∴lim

x→0f(x)

x=lim

x→0f』(x)

2x=lim

x→0f』(x)?f』(0)

2x=1

2f』』(0)

∴lim

n→∞|f(1n)

(1n)|是一常數

∴由比值判別法可知原級數絕對收斂

設f(x)有連續的導數,f(0)=0,且f'(0)=b,若函式f(x)=(f(x)+asinx)/x,x≠0;a,x=0;在x=0處連續,求常數a

10樓:

只有第一和第三問有解:

第一個問題:函式在0點連續,則limf(x)=f(0)=a;

limf(x)=lim=lim=f'(0)+a=a+b;

所以 a=a+b;

第二個問題:在x→0時f(x)不與x³同階;

第三問:lim=lim

=lim=lim

=lim=1/6;

第四個問題:函式在0點不可導,無法繼續求解;

第五個問題:太複雜,n不用具體數值無法用有限表示式表示;

設fx在a內可導,且limfxA0當

題目條來件應該是limf x a 0 則由極自限的保號性可bai知存在 dux,當x x時,f x a 2所以zhi當x x時,由拉格朗日中值定理dao存在c x,x 使得f x f x f c x x a 2 x x 這裡c x所以f c a 2 所以f x f x a x x 2 當x f x ...

設fx在上連續,在0,3內可導,且f

反證法 設不存在baif du 0 則f zhix 在 0,dao3 內遞增版或遞減 遞增時 f 0 f 1 f 2 f 3 1所以f 0 f 1 f 2 3,與條件矛盾所以存在f 0 首先證明存在a 0,3 使得f a 1.由此,f x 在 0,3 上連續,0,3 上可導,且f a f 3 1 利...

設如果fx在上連續,在0,1內可導,且f

存在找特例。三個點座標,連續,得出可能為拋物線。設,f x 4 x 1 2 2 1,則f x 8x 4,8x 4 1,則x 3 8.所以存在這樣的點 建構函式即可 答案如圖所示 設f x 在 0,1 上連續,在 0,1 內可導,且f 1 f 1 2 令g x f x x,則g 0 0,g 1 2 1...