1樓:匿名使用者
a=1/2
f(x)=x+0.5/x+2
由單調性證明f(x)在【√2/2,+無窮)是單調遞增的所以當x=1時取最小值為7/2
任意x∈〖1,+∞),(x^2+2x+a)/x≥0均成立。
所以x²+2x+a≥0恆成立
(x+1)²≥1-a恆成立
所以x+1≥√(1-a)
或x+1≤-√(1-a)
x≥√(1-a) -1
或x≤-√(1-a) -1
其解集應為:x≥1
所以√(1-a) -1<1
1-a<4
a<-3
2樓:匿名使用者
我只做第二問,
f(x)>0恆成立,則有
(x^2+2x+a)/x>0,
x+2+(a/x)>0,
a/x>-(x+2),而,x∈【1,正無窮)。
a>-(x+2)x=-x^2-2x,
令,g(x)=-x^2-2x,x∈【1,正無窮)。
g(x)=-(x+1)^2+1.
g(x)對稱軸x=-1,拋物線開口向下,
當x=1時,g(x)有最大值,g(x)max=g(1)=-1-2=-3.
只有當a>g(x)最大值時,f(x)>0恆成立,即有,a>-3.
3樓:惹待風暴
f(x)=(x^2+2x+a)/x,x∈【1,正無窮)。a=1/2.
y=(x^2+2x+1/2)/x=x+1/2x+2,在[根號2/2,正無窮)遞增。(0,根號2/2】遞減。最小值為f(1)=3.5
f(x)=(x^2+2x+a)/x=x+a/x+2,.........
已知函式f x x 2 2bx c cb1 的影象過點A(0),且方程f x 1 0有實數根
f x x 2 2bx c c 1 3.方程f x 1 x 2 2bx c 1 0 有實數根,b 2 c 1 b 2 2b 0,b 1 3,0 b 1.由 30,f m 4 f m 無法判斷f m 4 的符號。1 由題意f 1 1 2b c 0 得c 1 2b 又有f x 1 0 有實數根 即 函式...
已知函式fxx22xx0x22xx
f x x 2x x 0 x?2x x 0 f a 0,a 0 a?2a 0 或?a 0 a 2a 0 2 a 2,a的取值範圍是 2,2 故答案為 2,2 已知函式f x x2 2x,x 0x2?2x,x 0.若f a f a 0,則a的取值範圍是 a.1,1 b.函式f x x 2x,x 0 x...
設函式fx x 2 x a 1, x r1 判斷函
1 當a 0時,f x 為偶函式 當a 0時,f x 既不是偶函式,也不是奇函式。2 當x a時,f x x 2 x 1 a x 1 2 2 3 4 a 當a 1 2時,f x min 3 4 a當a 1 2時,f x min f a a 2 1 當x a時,f x x 2 x 1 a x 1 2 ...