函式f x 奇偶性與它的導數的奇偶性的關係,並給出證明過程

2021-03-22 08:17:10 字數 5459 閱讀 5019

1樓:匿名使用者

為什麼要用不定積分,只要用導數法則和奇偶性質就可以很容易解的嘛比如,設f(x)為奇函式

則f(x)=-f(-x)

所以f'(x)=(-f(-x))'=-f'(-x)(-x)'=f'(-x)

所以f(x)的導函式是偶函式

同理可證,若f(x)為偶函式,則它的導函式為奇函式.

原函式與導函式奇偶性關係如何證明

2樓:飛神

這個問題要分情況,原函式如果是奇函式或者偶函式,那麼導函式和原函式奇偶性是相反的,但是,如果給出的條件是導函式的奇偶性,求原函式的奇偶性,那麼就不一定了,因為從導函式到原函式有一個積分的環節,是可以加上任意常數的,所以導函式是奇函式時,原函式都是偶函式,但是導函式是偶函式時,原函式有且只有一種情況是奇函式,就是滿足f0=0的條件下的取值。有錯的希望指出,謝謝

3樓:匿名使用者

用定義證即可:

若f(-x)=f(x)

則f'(-x)=lim_(f(-x+δx)-f(-x))/δx=lim_(f(x-δx)-f(x))/δx=lim_-((f(x-δx)-f(x))/(-δx))=-f'(x)

若f(-x)=-f(x)

則f'(-x)=lim_(f(-x+δx)-f(-x))/δx=lim_(-f(x-δx)+f(x))/δx=lim_(f(x-δx)-f(x))/(-δx)=f'(x)

所以f(x)和f'(x)的奇偶性相反

4樓:貳寒業德

只能定義證,用-x替換f(x)中的x,若f(-x)=-f(x),就是奇函式,若f(-x)=f(x),就是偶函式,只此一法,別無他家。

例如,證f(x)=x+1/x是奇函式,只要用-x替換x,得f(-x)=-x+1/(-x)=-x-1/x=-(x+1/x)=-f(x)。

證f(x)=x^2是偶函式,只要用-x替換x,得f(-x)=(-x)^2=x^2=f(x)

5樓:昊昊巨蟹座

可利用其函式關係及其函式影象進行證明

6樓:妳瑪買匹

我想問一下,他們兩不管什麼時候都是充分必要條件嗎?也就是說,若原函式為奇函式,那麼導函式必為偶函式,反過來,導函式為偶函式,那麼原函式一定為奇函式嗎?怎麼證明?

函式的奇偶性與其導函式的奇偶性有什麼關係

7樓:原來是gd啊

若f(x)為f(x)的任意原函式,則

f(x)為奇函式⇔f(x)為偶函式

f(x)為偶函式(不能推出)f(x)為奇函式f(x)為奇函式⇒f(x)為偶函式

2019版 李王複習全書第五頁原話

8樓:咎倫頓昭

數的奇偶性:在函式y=f(x)中,如果對於函式定義域內的任意一個x.

(1)若都有f(-x)=-f(x),則稱函式f(x)為奇函式;

(2)若都有f(-x)=f(x),則稱函式f(x)為偶函式。

如果函式y=f(x)在某個區間上是奇函式或者偶函式,那麼稱函式y=f(x)在該區間上具有奇偶性。

9樓:善言而不辯

f(x) 是奇函式, f(-x)=-f(x),兩邊求導,得到 f'(-x)(-1)=-f'(x)∴f'(-x)=f'(x),即f'(x)是偶函式.

f(x) 是偶函式, f(-x)=f(x),兩邊求導,得到 f'(-x)(-1)=f'(x)∴f'(-x)=-f'(x),即f'(x)是奇函式.

∴奇函式的導函式是偶函式,偶函式的導函式是奇函式。

10樓:匿名使用者

沒有必然聯絡,但是函式是偶函式的話,那麼在x=0處,導函式等於0,在x=0是,函式是一個極值

11樓:匿名使用者

函式是奇(偶)函式,導函式是偶(奇)函式

導函式是奇(偶)函式,函式是偶(不一定是奇)函式

12樓:忍與尊嚴

奇函式的原函式一定是偶函式,偶函式的原函式不一定是奇函式。

原函式與導函式奇偶性關係怎樣證明?

13樓:匿名使用者

用定義證即可:

若f(-x)=f(x)

則f'(-x)=lim_(f(-x+δx)-f(-x))/δx=lim_(f(x-δx)-f(x))/δx=lim_-((f(x-δx)-f(x))/(-δx))=-f'(x)

若f(-x)=-f(x)

則f'(-x)=lim_(f(-x+δx)-f(-x))/δx=lim_(-f(x-δx)+f(x))/δx=lim_(f(x-δx)-f(x))/(-δx)=f'(x)

所以f(x)和f'(x)的奇偶性相反

函式的奇偶性與其導函式的奇偶性有什麼關係?

14樓:demon陌

f(x) 是奇函式, f(-x)=-f(x),兩邊求導,得到 f'(-x)(-1)=-f'(x)∴f'(-x)=f'(x),即f'(x)是偶函式.

f(x) 是偶函式, f(-x)=f(x),兩邊求導,得到 f'(-x)(-1)=f'(x)∴f'(-x)=-f'(x),即f'(x)是奇函式.

∴奇函式的導函式是偶函式,偶函式的導函式是奇函式。

15樓:己曦古紅葉

函式是奇(偶)函式,導函式是偶(奇)函式

導函式是奇(偶)函式,函式是偶(不一定是奇)函式

請教:導數和原函式的奇偶性關係

16樓:是你找到了我

1、f(x)為奇函式,f(x)為偶

函式;2、f(x)為偶函式(不能推出)f(x)為奇函式;

3、f(x)為奇函式,f(x)為偶函式。

其中,f(x)為函式f(x)原函式。

若函式f(x)在某區間上連續,則f(x)在該區間內必存在原函式,這是一個充分而不必要條件,也稱為「原函式存在定理」。函式族f(x)+c(c為任一個常數)中的任一個函式一定是f(x)的原函式,故若函式f(x)有原函式,那麼其原函式為無窮多個。

17樓:匿名使用者

導數和原函式的奇偶性是相對的,如果導數是奇函式,原函式就是偶函式。反之,原函式就是奇函式。

函式與其導數在奇偶性上的關係

18樓:匿名使用者

不太對,如果沒有求到導函式為0前是對的。

比如:f(x)=`x^2

f'(x)=2x

f''(x)=2

f'''(x)=0

以後就都是零了,那麼就既奇又偶了。

證:設y=f(x)為奇函式

f(-x)=-f(x)

兩邊求導,得:-f'(-x)=-f'(x)即f'(-x)=f'(x),為偶函式,以後同理

如何證明函式的奇偶性

19樓:那個閃電

先看定義域是否關於原點對稱

如果不是關於原點對稱,則函式沒有奇偶性

若定義域關於原點對稱

則f(-x)=f(x),f(x)是偶函式

f(-x)=-f(x),f(x)是奇函式

具體方法:

1、定義法

①定義域是否關於原點對稱,對稱是奇偶函式的前提條件

②f(-x)是否等於±f(x).

2、圖象法

①圖象關於原點中心對稱是奇函式

②圖象關於y軸對稱是偶函式.

3、性質法

①兩個奇函式的和仍是奇函式

②兩個偶函式的和仍是偶函式

③兩個奇函式的積是偶函式

④兩個偶函式的積是偶函式

⑤一個奇函式和一個偶函式的積是奇函式.

擴充套件資料:

奇偶性是函式的基本性質之一。

一般地,如果對於函式f(x)的定義域內任意一個x,都有f(-x)=f(x),那麼函式f(x)就叫偶函式。

一般地,如果對於函式f(x)的定義域內任意一個x,都有f(-x)=-f(x),那麼函式f(x)就叫奇函式。

一、運算

1、 兩個偶函式相加所得的和為偶函式。

2、兩個奇函式相加所得的和為奇函式。

3、兩個偶函式相乘所得的積為偶函式。

4、 兩個奇函式相乘所得的積為偶函式。

5、一個偶函式與一個奇函式相乘所得的積為奇函式。

6、幾個函式複合,只要有一個是偶函式,結果是偶函式;若無偶函式則是奇函式。

7、偶函式的和差積商是偶函式。

8、奇函式的和差是奇函式。

9、奇函式的偶數個積商是偶函式。

10、奇函式的奇數個積商是奇函式。

11、奇函式的絕對值為偶函式。

12、偶函式的絕對值為偶函式。

二、判斷單調

偶函式在對稱區間上的單調性是相反的。

奇函式在整個定義域上的單調性一致。

三、奇偶數

一個數滿足xmod2=1,那麼它是奇數;

一個數滿足xmod2=0,那麼它是偶數。

注:mod 是餘數的意思。 例如:m=xmod2 ,x=7的話,m=1

四、注意

判斷函式奇偶性時首先要看其定義域是否關於原點對稱。一個函式是奇函式或偶函式,其定義域必須關於原點對稱。

20樓:匿名使用者

證明函式的奇偶性的方法如下:

首先要看函式的定義域是否關於y軸對稱,如果定義域不是關於y軸對稱的,則是非奇非偶函式。如果定義域關於y軸對稱了:

1.能證明該函式f(x)=f(-x),則是偶函式。

2.能證明該函式f(-x)=-f(x),則是奇函式。

3.如果不符合1和2的,則是非奇非偶函式。

函式奇偶性的定義:

一般地,如果對於函式f(x)的定義域內任意一個x,都有f(x)=f(-x),那麼函式xf就叫偶函式。一般地,如果對於函式xf的定義域內任意一個x,都有f(-x)=-f(x),那麼函式xf就叫奇函式。

21樓:紫色and石頭

一般地,如果對於函式f(x)的定義域內任意一個x,都有f(-x)=f(x),那麼函式f(x)就叫做偶函式。如果對於函式f(x)的定義域內任意一個x,都有f(-x)=-f(x),那麼函式f(x)就叫做奇函式。

只能定義證,只此一法。

例如,證f(x)=x+1/x是奇函式,只要用-x替換x,得f(-x)=-x+1/(-x)=-x-1/x=-(x+1/x)=-f(x)。

證f(x)=x^2是偶函式,只要用-x替換x,得f(-x)=(-x)^2=x^2=f(x)

22樓:窩巢真赤激

先看這個函式的定義域是否關於原點對稱

再用f(x)與f(-x)進行比較

如果f(x)=f(-x)那麼是偶函式

如果f(x)= - f(-x)那麼是奇函式

23樓:呼哈呼哈

判斷定義域是否關於原點對稱,將-x帶入原函式,判斷和原函式表示式的關係。

函式奇偶性,冪函式的奇偶性

偶函式 f x f x 奇函式 f x f x 冪函式的奇偶性?y x的n m次方,如果n是奇數m是奇數 奇函式如果n是奇數m是偶數 非奇非偶函式 如果n是偶數m是奇數 偶函式如果n是偶數m是偶數偶函式 第一個是錯誤的 a如果是分數則化為最簡分式時分子為偶數,那麼函式的定義域就是 0,正無窮 沒有奇...

如何判斷函式的奇偶性,判斷函式奇偶性最好的方法

首先看複合函式的定抄義域。如果定義域不關於原點對稱,則該複合函式是非奇非偶函式 如果定義域關於原點對稱,則看內外函式,當內函式是偶函式時,不論外函式是怎樣的函式,複合函式一定是偶函式 當內函式是奇函式 外函式也是奇函式時,複合函式是奇函式 當內函式是奇函式,外函式是偶函式時,複合函式是偶函式。f x...

對數函式判斷奇偶性判斷對數函式的奇偶性,怎麼判斷啊?求講解,過程。

第一學數學要學好概念 從你的問題來看你的概念非常的模糊 第二對數函式是不具有奇偶性的 因為對數函式的定義域就是x 0 奇偶性判定的前提條件就是定義域要關於原點對稱 這就是我說的你概念模糊 ps 不要說什麼x絕對值的對數之類的話 那不叫對數函式 那是複合函式 第三兩個函式相乘是要有前提條件的 就是定義...