設總體X服從區間(0上的均勻分佈,其中0為未知引數(X1,X2Xn)是從該總體中抽取的一

2021-04-19 07:39:19 字數 4034 閱讀 7045

1樓:麻花疼不疼

(copy1)記x(1)bai

=min(x1

,dux2,…,xn),x(2)=max(x1,x2,…,xn)由題意知,總體x的概率函式zhi為 f(x)=1θ,0≤x≤θ

0,其它dao

由於0≤x1,x2,…,x2≤θ,等價於0≤x(1)≤x(2)≤θ.則似然函式為

l(θ)=n

πi=1

f(xi

)=1θ

n,0≤x(1)≤x(2)≤θ.

於是對於滿足條件x(2)≤θ的任意θ有

l(θ)=1θn

≤1xn(2)

即l(θ)在θ=x(2)時取到最大值1xn(2)θ

=x(2)

=max

1≤i≤n(xi

)θ=x(2)

=max

1≤i≤n(xi

)(2)x的密度函式為f(x)=1θ

,0≤x≤θ

0,其它

則分佈函式為f(x)=

0,x≤θxθ

,0<x<θ

1,x≥θθ=x

(2)=max

1≤i≤n(xi

)概率密度函式為fθ

(x)=n[f(x)]

n?1f(x)=

nxn?1

θ,0<x<θ

0,其它

θ)=∫

+∞?∞xfθ

(x)dx=∫θ0

nxnθdx=n

n+1θ≠0

θ不是θ的無偏估計.

設總體x~u(0,θ),θ>0為未知引數,x1,x2,…,xn為其樣本,.x=1nni=1xi為樣本均值,則θ的矩估計

2樓:墨汁諾

用最大似然估計法估計出λ,或用矩估計法來估計可得λ估計量=x拔=(x1+x2+…+xn)/n

最大似然估計法

l(λ)=∏【i從1到n】λ^xi*e^(-λ)/xi!

lnl(λ)=(x1+x2+…+xn)*lnλ+-nλ-(lnx1!+lnx2!+…+lnxn!)

對λ求導,並令導數等於0得

(lnl(λ))'=(x1+x2+…+xn)/λ-n=0

λ估計量=x拔=(x1+x2+…+xn)/n

矩估計法

ex=λ

所以:λ估計量=x拔=(x1+x2+…+xn)/n

所以p=p=e^(-λ估計)=e^(-x拔)

一階矩估計就是求數學期望。一個引數時求一下期望就能得到了。最後的那個期望改寫成x拔,那個x拔=一個含預估引數的表示式,反過來用x拔表達引數就是據估計值。

如果是兩個引數,必須求完期望,也就是1階矩估計之後再求二階據估計,一般用的是求方差。兩個矩估計裡面都含有引數,或者哪個不含某一個引數。

3樓:手機使用者

由於x服從均勻分佈,則

ex=ex

=…exn=θ

2,即exi=θ2e.

x=e(1nn

i=1xi)=1

ne(x1+x2+…+xn)=ex1=θ

2由於e.x=θ

2所以∧

θ=2.

xθ的矩估計量為:2.x.

設(x1,x2,…,xn)為來自總體x的一個樣本,x密度函式為f(x;θ)=1θe?xθ,x>00,x≤0,其中θ>0

設總體x的概率分佈為 x012p2θ(1-θ)2θ2 1-2θ 其中θ(0<θ<12)是未知引數,利用總體x的如下樣本

設總體x概率密度函式為f(x;θ)=(θ+1)xθ,o<x<1o,其他,其上θ>-1為未知引數.設(x1,x2,…,x

4樓:小宇

設x1,x了,…xn是來自總體的簡單隨機樣本①矩估計

∵ex=∫

+∞-∞

xf(x)dx=∫1五

(θ+1)x

(θ+1)

dx=θ+1

θ+了令ex=.x,得

θ+1θ+了=.x

即θ=1

1-.x

-了∴θ的矩估計量∧θ=1

1-.x

-了②最0似然估計

∵最0似然函式為:

l(x,x

了,…,x

n;θ)=nπ

i=1(θ+1)xiθ

五<xi<1五

,其它∴lnl=nln(θ+1)+θn

i=1lnx

i,五<xi<1

∴dlnl

dθ=n

θ+1+n

i=1lnx

i令dlnl

dθ=五

解得∧θ

=-nn

i=1lnxi-1

即θ的最0似然估計為

設總體x的概率密度為f(x,θ)=θe?θx,0<x<1 0,x<0 (θ>0未知)x1,x2,…xn為來自總體x的隨機

總體x服從正態分佈n(μ,σ2),其中σ2未知,x1,x2,…,xn為來自該總體的樣本, 5

5樓:匿名使用者

u=n^(1/2)*(xˉ-μ)/σ服從標準正態分佈即u n(0,1)

因此d(u)=1

正態曲線由均數所在處開始,分別向左右兩側逐漸均勻下降。曲線與橫軸間的面積總等於1,相當於概率密度函式的函式從正無窮到負無窮積分的概率為1。即頻率的總和為100%。

圖形特徵

集中性:正態曲線的高峰位於正**,即均數所在的位置。

對稱性:正態曲線以均數為中心,左右對稱,曲線兩端永遠不與橫軸相交。

均勻變動性:正態曲線由均數所在處開始,分別向左右兩側逐漸均勻下降。

曲線與橫軸間的面積總等於1,相當於概率密度函式的函式從正無窮到負無窮積分的概率為1。即頻率的總和為100%。

6樓:匿名使用者

||令y=x-μ,則y~(0,σ2),其概率密度為f(y)=12πσe?y22σ2,-∞<y<+∞,σ>0|y|=|x-μ|的數學期望為:e(|y|)=e(|x?

μ|)=∫+∞?∞|y|12πσe?y22σ2dy=2∫+∞0|y|12πσe?

y22σ2dy=2πσ於是:e(σ)=e

7樓:緋雪流櫻

σ未知,則由於(樣本均值-μ0)/(s/n½)服從t(n-1)分佈,所以選它作為檢驗統計量。

設總體x的概率密度為f(x,θ)=θ, 0<x<11?θ, 1≤x<20, 其他,其中θ是未知引數(0<θ<1)

8樓:矯鴻煊苟楓

(i)因為:ex=∫+∞

?∞xf(x,θ)dx=∫1

0xθdx+∫2

1x(1?θ)dx=32

-θ,令:32

-θ=.x,

可得θ的矩估計為:θ=32

-.x.

(ii)

由已知條件,似然函式為:

l(θ)=

θθ…θ

n個(1?θ)…(1?θ)

n?n個

=θn(1-θ)n-n,

兩邊取對數得:

lnl(θ)=nlnθ+(n-n)ln(1-θ),兩邊對θ求導可得:

d ln l(θ)dθ=

nθ+n?n

1?θ,

令:d ln l(θ)

dθ=0,

可得:θ=nn

,故θ得最大似然估計為nn.

9樓:灰機

由已知條件,似然函式為:

l(θ)=θθ…θ

n個(1?θ)…(1?θ)

n?n個

=θn(1-θ)n-n,

兩邊取對數得:

ln l(θ)=nlnθ+(n-n)ln(1-θ),兩邊對θ求導可得:

d ln l(θ)

dθ=n

θ+n?n

1?θ,

令:d ln l(θ)

dθ=0,

可得:θ=nn,

故θ得最大似然估計為:nn.

設函式fx在區間I上可導,若存在x0,xI,總有fx

yx 1 x y cos2x 因 bai為duf x f x0 f x0 x x0 f x x0 2 f x0 f x0 x x0 故,zhif x0 f x0 x x0 0 即可得出daof x 為專凸函屬數 設函式f x 在x 0處可導,討論函式 f x 在x 0處的可導性。1.若函式f x 在...

設(x1,x2xn 為總體x n(0,1 的樣

選dx拔 0,所以a b錯 c由單正態總體的抽樣分佈定理得x拔 s 根號n t n 1 c錯 d中把n 1移到分母裡面,得到版分子是自由度為權1的卡方分佈,分母是自由度為n 1的卡方分佈,滿足f分佈的定義,所以d對 設x1,x2,xn n 2 為來自總體n 0,1 的簡單隨機樣本,x為樣本均值,s2...

設fx,y在x0,y0的某鄰域內連續,且在x0,y

證明 由f x,y 在 x0,y0 的某鄰域內連續,得 lim x,y x,y f x,y f x,y f x,y f x0,y0 o 其中 x y x x x0,y y y0 又 f x0,y0 f x,y f x0,y0 設fx x0,y0 a,fy x0,y0 b,則lim 0 f x y a...