線性代數非齊次線性方程組通解問題

2021-03-03 21:07:09 字數 3988 閱讀 7354

1樓:由衷感謝

一樣。那個k可以調節。這種題就是不唯一的解。

線性代數非齊次線性方程組的通解

2樓:兔斯基

非齊次的解x1,x2,x3

則k(xi一xj)為齊次的解,又因為不成比例,所以基礎解析至少有兩個,

n一r(a)=基礎解析的個數

所以n一r(a)=基礎解析的個數≥2

(n為未知量個數)

又由a矩陣可知

2≤r(a)≤3

所以r(a)=2望採納

3樓:匿名使用者

非齊次線性方程組求通解

4樓:匿名使用者

^寫出增廣矩陣

1 1 1 1 1

0 1 -1 2 1

2 3 m+2 4 n+3

3 5 1 m+8 5

=r3-2r1,r4-3r1

1 1 1 1 1

0 1 -1 2 1

0 1 m 2 n+1

0 2 -2 m+5 2 r1-r2,r3-r2,r4-2r2=1 0 2 -1 0

0 1 -1 2 1

0 0 m+1 0 n

0 0 0 m+1 0

於是係數矩陣行列式為(m+1)2

有無窮多解,那麼m+1=n=0,即m=-1,n=01 0 2 -1 0

0 1 -1 2 1

0 0 0 0 0

0 0 0 0 0

得到通解為a(-2,1,1,0)^t+b(1,-2,0,1)^t+(0,1,0,0)^t

a和b為常數

5樓:靜靜地飄飛

η2-η1,η3-η1這不就是是兩個,有啥好解釋的

線性代數,求解非齊次線性方程組的通解

6樓:匿名使用者

非齊次線性方程組求通解

7樓:匿名使用者

1、列出方程組的增廣矩陣

做初等行變換,得到最簡矩陣

2、利用係數矩陣和增廣矩陣的秩

判斷方程組解的情況

r(a)=r(a,b)=3<4

所以,方程組有無窮解

3、將第五列作為特解

第四列作為通解

得到方程組的通解

過程如下圖:

線性代數:非齊次線性方程組與齊次線性方程組的解的關係

8樓:angela韓雪倩

非齊次線性方程組的任意兩個解之差是對應的齊次線性方程組的解。

非齊次線性方程組的解與對應的齊次線性方程組的解之和還是非齊次線性方程組的解。

如果知道非齊次線性方程組的某個解x,那麼它的任意一個解x與x的差x-x,一定是對應的齊次線性方程組的解,所以非齊次線性方程組的通解x=x+y,y是對應的齊次線性方程組的通解,而y是某個基礎解系的線性組合,y=k1ξ1+k2ξ2+...+krξr。

擴充套件資料:

非齊次線性方程組ax=b的求解步驟:

(1)對增廣矩陣b施行初等行變換化為行階梯形。若r(a)(2)若r(a)=r(b),則進一步將b化為行最簡形。

非齊次線性方程組有唯一解的充要條件是rank(a)=n。

非齊次線性方程組有無窮多解的充要條件是rank(a)齊次線性方程組:常數項全部為零的線性方程組。如果m求解步驟:

1、對係數矩陣a進行初等行變換,將其化為行階梯形矩陣;

2、若r(a)=r=n(未知量的個數),則原方程組僅有零解,即x=0,求解結束;

若r(a)=r3、繼續將係數矩陣a化為行最簡形矩陣,並寫出同解方程組;

4、選取合適的自由未知量,並取相應的基本向量組,代入同解方程組,得到原方程組的基礎解系,進而寫出通解。

線性代數,求非齊次線性方程組的通解 5

9樓:匿名使用者

佔個坑。明天回答

xj表未知量,aij稱係數,bi稱常數項。

稱為係數矩陣和增廣矩陣。若x1=c1,x2=c2,...,xn=**代入所給方程各式均成立,則稱(c1,c2,...,**)為一個解。若c1,c2,...,**不全為0,則稱(c1,c2,...,**)為非零解。

若常數項均為0,則稱為齊次線性方程組,它總有零解(0,0,...,0)。兩個方程組,若它們的未知量個數相同且解集相等,則稱為同解方程組。線性方程組主要討論的問題是:

1一個方程組何時有解。2有解方程組解的個數。3對有解方程組求解,並決定解的結構。

這幾個問題均得到完滿解決:所給方程組有解,則秩(a)=秩(增廣矩陣);若秩(a)=秩=r,則r=n時,有唯一解;r

當非齊次線性方程組有解時,解唯一的充要條件是對應的齊次線性方程組只有零解;解無窮多的充要條件是對應齊次線性方程組有非零解。但反之當非齊次線性方程組的匯出組僅有零解和有非零解時,不一定原方程組有唯一解或無窮解,事實上,此時方程組不一定有 ,即不一定有解。

克萊姆法則(見行列式)給出了一類特殊線性方程組解的公式。n個未知量的任一齊次方程組的解集均構成n維空間的一個子空間。

線性方程組有廣泛應用,熟知的線性規劃問題即討論對解有一定約束條件的線性方程組問題。

10樓:匿名使用者

非齊次線性方程組求通解

線性代數:我求的非齊次線性方程組的通解與答案不同,怎麼驗證我求的對不對

11樓:師哥

把你的通解取個特殊值帶入算一下

12樓:陳玉潔在路上

是那塊不同,如果對應的齊次的通解不同的話,那估計是你付的線性無關的向量不同,檢驗就是在帶回去看看是否為零,如果是特解不同,那也是付值的原因,一般給自由變數為0即可

13樓:匿名使用者

首先看非齊次特解對不對

14樓:馮富貴悉錦

你好!求非齊次線性方程組的通解的時候是用它對應的齊次線性方程組的通解加上自己的一個特解。經濟數學團隊幫你解答,請及時採納。謝謝!

關於線性代數非齊次線性方程組的特解問題

15樓:熙苒

^圖中求特解,令 x3 = x4 = 1, 只是一種「取值」方法, 得特解 (11, -4, 1, 1)^t.

其實更簡單的「取值」方法是 令 x3 = x4 = 0,得特解 (1, 1, 0, 0)^t.

4 個未知數,2 個方程,任意給出 2 個未知數的值,

算出另 2 個未知數,都可以得到 1 組特解,

只不過形式越簡單越好,例如取 特解 (1, 1, 0, 0)^t。

線性代數是數學的一個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的一個重要課題;因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。

由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。

概念線性代數是代數學的一個分支,主要處理線性關係問題。線性關係意即數學物件之間的關係是以一次形式來表達的。例如,在解析幾何裡,平面上直線的方程是二元一次方程;空間平面的方程是三元一次方程,而空間直線視為兩個平面相交,由兩個三元一次方程所組成的方程組來表示。

含有n個未知量的一次方程稱為線性方程。關於變數是一次的函式稱為線性函式。線性關係問題簡稱線性問題。

解線性方程組的問題是最簡單的線性問題。

所謂「線性」,指的就是如下的數學關係:

。其中,f叫線性運算元或線性對映。所謂「代數」,指的就是用符號代替元素和運算,也就是說:

我們不關心上面的x,y是實數還是函式,也不關心f是多項式還是微分,我們統一把他們都抽象成一個記號,或是一類矩陣。合在一起,線性代數研究的就是:滿足線性關係

16樓:qp浪

為什麼特解是這個?還可以是什麼

線性代數的線性方程組通解問題,線性代數,線性方程組通解的問題!!!

a的秩為n 1數的 copy個數 故線性方程組ax 0有無窮多解 答案是k 1,1,k,1 t,k為任意實數,說明,當k每取一個實數時,即有一個解,再取一個實數,又形成一個解,由於k為任意實數可取無數的k值,故k 1,1,k,1 t可以表示ax 0的無窮多解,即線性代數中的術語 基礎解系 是的,無窮...

齊次線性方程組和非齊次線性方程組的區別

1 常數項不同 齊次線性方程組的常數項全部為零,非齊次方程組的常數項不全為零。2 表示式不同 齊次線性方程組表示式 ax 0 非齊次方程組程度常數項不全為零 ax b。擴充套件資料 齊次線性方程組求解步驟 1 對係數矩陣a進行初等行變換,將其化為行階梯形矩陣 2 若r a r n 未知量的個數 則原...

線性代數方程組求解,線性代數,線性方程組的解?

三個變數,4個方程,選三個求解,代入另一箇中驗證。2 1 x1 2x3 2.5 4 2 x1 2x3 2 重複。選 1 3 求解 1 x2 3 3x1 x3 4.6 5 6 x2 5x1 10 x1 2 代入 6 x3 3x1 4 3 2 4 2 代入 1 x2 3 x1 x3 3 2 2 3 得解...