什麼情況下偏導數等於導數,偏導數是什麼它和導數有什麼區別

2021-03-03 21:24:17 字數 4991 閱讀 5188

1樓:司馬鑄劍

偏導數是將一元函式的導數推廣到多元函式,我們知道,導數是函式的區域性性質,專函式在一點的導數描述了屬

這個函式在這一點附近的變化率,反映函式變化的快慢。一個多變數函式的偏導數,就是它關於其中一個變數的導數而保持其他變數不變。

偏導數是什麼?它和導數有什麼區別?

2樓:喵喵喵

偏導數是將一元函式的導數推廣到多元函式,我們知道,導數是函式的區域性性質,函式在一點的導數描述了這個函式在這一點附近的變化率,反映函式變化的快慢。一個多變數函式的偏導數,就是它關於其中一個變數的導數而保持其他變數不變。

區別:一、一元函式,可導必連續,連續不一定可導。多元函式,偏導數存在不能保證連續。

二、幾何意義不同

函式y=f(x)在x0點的導數f'(x0)的幾何意義:表示函式曲線在點p0(x0,f(x0))處的切線的斜率(導數的幾何意義是該函式曲線在這一點上的切線斜率)。

偏導數 f'x(x0,y0) 表示固定面上一點對 x 軸的切線斜率;偏導數 f'y(x0,y0) 表示固定面上一點對 y 軸的切線斜率。

擴充套件資料

求法:當函式 z=f(x,y) 在 (x0,y0)的兩個偏導數 f'x(x0,y0) 與 f'y(x0,y0)都存在時,我們稱 f(x,y) 在 (x0,y0)處可導。如果函式 f(x,y) 在域 d 的每一點均可導,那麼稱函式 f(x,y) 在域 d 可導。

此時,對應於域 d 的每一點 (x,y) ,必有一個對 x (對 y )的偏導數,因而在域 d 確定了一個新的二元函式,稱為 f(x,y) 對 x (對 y )的偏導函式。簡稱偏導數。

按偏導數的定義,將多元函式關於一個自變數求偏導數時,就將其餘的自變數看成常數,此時他的求導方法與一元函式導數的求法是一樣的。

3樓:demon陌

一、定義不同

導數,是對含有一個自變數的函式進行求導。

偏導數,是對含有兩個自變數的函式中的一個自變數求導。

二、幾何意義不同

函式y=f(x)在x0點的導數f'(x0)的幾何意義:表示函式曲線在點p0(x0,f(x0))處的切線的斜率(導數的幾何意義是該函式曲線在這一點上的切線斜率)。

偏導數 f'x(x0,y0) 表示固定面上一點對 x 軸的切線斜率;偏導數 f'y(x0,y0) 表示固定面上一點對 y 軸的切線斜率。

高階偏導數:如果二元函式 z=f(x,y) 的偏導數 f'x(x,y) 與 f'y(x,y) 仍然可導,那麼這兩個偏導函式的偏導數稱為 z=f(x,y) 的二階偏導數。二元函式的二階偏導數有四個:

f"xx,f"xy,f"yx,f"yy。

4樓:

導數和偏導沒有本質區別,都是當自變數的變化量趨於0時,函式值的變化量與自變數變化量比值的極限(有過極限存在的話).

一元函式,一個y對應一個x,導數只有一個.

二元函式,一個z對應一個x和一個y,那就有兩個導數了,一個是z對x的導數,一個是z對y的導數,稱之為偏導.

求偏導時要注意,對一個變數求導,則視另一個變數為常數,只對改變數求導,從而將偏導的求解轉化成了一元函式的求導了.

5樓:不老巖

偏導數是指含有多個變數的多元函式中關於其中某一個變數的變化率,其特點是一個變數在變化時其他變數保持恆定。偏導數與導數的區別是,單個偏導數不能準確地表示函式的整體變化率,而一元函式中的導數可以表示函式的變化率。

6樓:匿名使用者

和導數差不多,只是偏倒數是求得二元方程的導數

偏導數和全導數有什麼區別?

7樓:清澈動聽的辣條

二者的適用物件不同。偏導數

針對的是多元函式,全導數針對的是一元函式。

偏導數:求一個函式的偏導數就是當此函式含有多個變數時,在其他變數保持恆定只求之中一個變數的導數。所以說偏導數主要針對多元函式。

全導數:函式z=f(m,n),其中自變數x構成了中間變數m=m(x),n=n(x),且z為關於x的一元函式。這時稱z的導數就為全導數。所以說全導數主要針對複合型一元函式。

拓展資料:

1、在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。

2、已知二元函式z=f(u,v),其中u、v是關於x的一元函式,有u=u(x)、v=v(x),u、v作為中間變數構成自變數x的複合函式z,它最終是一個一元函式,它的導數就稱為全導數。全導數的出現可以作為一類導數概念的補充,其中滲透著整合全部變數的思想。對全導數的計算主要包括一一型鎖鏈法則、二一型鎖鏈法則、三一型鎖鏈法則,其中二一型鎖鏈法則最為重要,並且可以將二一型鎖鏈法則推廣到更加一般的情況n一型鎖鏈法則。

8樓:忘洛心

區別:

1、偏導數是隻對其中一個變數求導數,物理幾何意義是一個平面(平行於x或y或z軸)上的一條線。

2、全導數是對各個變數求偏導後疊加。

拓展資料:

一、偏導數

在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。

在一元函式中,導數就是函式的變化率。對於二元函式研究它的「變化率」,由於自變數多了一個,情況就要複雜的多。

在 xoy 平面內,當動點由 p(x0,y0) 沿不同方向變化時,函式 f(x,y) 的變化快慢一般說來是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 點處沿不同方向的變化率。

在這裡我們只學習函式 f(x,y) 沿著平行於 x 軸和平行於 y 軸兩個特殊方位變動時, f(x,y) 的變化率。

偏導數的表示符號為:∂。

偏導數反映的是函式沿座標軸正方向的變化率。

二、全導數

已知二元函式z=f(u,v),其中u、v是關於x的一元函式,有u=u(x)、v=v(x),u、v作為中間變數構成自變數x的複合函式z,它最終是一個一元函式,它的導數就稱為全導數。

全導數的出現可以作為一類導數概念的補充,其中滲透著整合全部變數的思想。

對全導數的計算主要包括:

型鎖鏈法則、二一型鎖鏈法則、三一型鎖鏈法則,其中二一型鎖鏈法則最為重要,並且可以將二一型鎖鏈法則推廣到更加一般的情況n一型鎖鏈法則。

9樓:偷來浮生

偏導數是隻對其中一個變數求

導數,全導數是對各個變數求偏導後疊加。

偏導數是隻對其中一個變數求導數,在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定。

全導數是對各個變數求偏導後疊加。對全導數的計算主要包括一一型鎖鏈法則、二一型鎖鏈法則、三一型鎖鏈法則,其中二一型鎖鏈法則最為重要,並且可以將二一型鎖鏈法則推廣到更加一般的情況n一型鎖鏈法則。

在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。

當函式 z=f(x,y) 在 (x0,y0)的兩個偏導數 f'x(x0,y0) 與 f'y(x0,y0)都存在時,我們稱 f(x,y) 在 (x0,y0)處可導。如果函式 f(x,y) 在域 d 的每一點均可導,那麼稱函式 f(x,y) 在域 d 可導。

此時,對應於域 d 的每一點 (x,y) ,必有一個對 x (對 y )的偏導數,因而在域 d 確定了一個新的二元函式,稱為 f(x,y) 對 x (對 y )的偏導函式。簡稱偏導數。

按偏導數的定義,將多元函式關於一個自變數求偏導數時,就將其餘的自變數看成常數,此時他的求導方法與一元函式導數的求法是一樣的。

已知二元函式z=f(u,v),其中u、v是關於x的一元函式,有u=u(x)、v=v(x),u、v作為中間變數構成自變數x的複合函式z,它最終是一個一元函式,它的導數就稱為全導數。全導數的出現可以作為一類導數概念的補充,其中滲透著整合全部變數的思想。對全導數的計算主要包括一一型鎖鏈法則、二一型鎖鏈法則、三一型鎖鏈法則,其中二一型鎖鏈法則最為重要,並且可以將二一型鎖鏈法則推廣到更加一般的情況n一型鎖鏈法則。

設z是u、v的二元函式z=f(u,v),u、v是x的一元函式u=u(x)、v=v(x),z通過中間變數u、v構成自變數x的複合函式。這種兩個中間變數、一個自變數的多元複合函式是一元函式,其導數稱為全導數。

10樓:憶惡魔

導數和偏導沒有本質區別,都是當自

變數的變化量趨於0時,函式值的變化量與自變數變化量比值的極限.

一元函式,一個y對應一個x,導數只有一個.二元函式,一個z對應一個x和一個y,那就有兩個導數了,一個是z對x的導數,一個是z對y的導數,稱之為偏導.

拓展資料:導數(derivative)是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df/dx(x0)。

設有二元函式z=f(x,y),點(x0,y0)是其定義域d內一點.把y固定在y0而讓x在x0有增量△x,相應地函式z=f(x,y)有增量(稱為對x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。如果△z與△x之比當△x→0時的極限存在,那麼此極限值稱為函式z=f(x,y)在(x0,y0)處對x的偏導數(partial

derivative)。記作f'x(x0,y0)。

什麼時候用定義求偏導數

11樓:天天小布丁

什麼時候都可以用定義求偏導數。在偏導數連續的時候可以直接求導,否則建議使用定義去做。

在一點偏導數的計算什麼時候用定義,什麼時候用求導

12樓:匿名使用者

實際上和計算導數一樣

如果在某一點就是連續一致的函式

直接使用求導法則公式即可

而如果存在分段函式

即左右兩側函式不一致

就要使用定義進行推導

偏導數怎麼求的,偏導數怎麼求的

偏導數是隻求對某一個變數的導數,與求普通導數完全一樣,只要把另一個未知數看作常數即可。把y當成常數 你把y看成a來更直觀 只有一個未知數x按複合函式來算 ycos x y ysin x y x y ysin x y 把y看作常量,複合函式的求導法則,y sin x y x y ysin x y 鏈式...

高等數學偏導數,高等數學中的偏導數問題

樓上別誤bai導樓主了 已知duz x2f e x,y 設u e x,v y 則z x2f u,v z x 2xf u,v x2 z u u x z v v x 這裡的 z u就是 zhif 1,其實 z v f 2 為什麼答案中dao沒有?因專為 v x 0,所以直接不屬寫出來了。v y,而關於x...

高等數學,偏導數計算,高等數學,偏導數計算

y 對 誰求導 z y x,z x y x 2,z y 1 x 高等數學中關於求偏導數的問題?第一步 2z x2 z x xz對x的二階偏導數是 z對x的一階偏導數 這個函式的一階偏導數第二步對複合函式 z x yz e z xy 求一階偏導數利用f x g x 的導數這個公式,但是注意因為 z x...