1樓:餘蹄
對於這題,基礎解系是指滿足方程ax=0的兩個線性無關的解向量,通解就是可版
以表達所權
有解的形式,對於解向量可以通過賦值來求,要對自由變數賦值~而自由變數是指除主元外的變數,主元是指階梯型行列式中每一行的第一個不為零的數所對應的變數,如本題,第一行是第一個,第二行是第二個,第三和四都是第四個。也就是說x1.x2.
x4,是主元,剩下的x3.x5.就是變數了~
線性代數的基礎解系是什麼,該怎樣求啊
2樓:是你找到了我
基礎解系
:齊次線性方程組的解集的極大線性無關組稱為該齊次線性方程組的基礎解系。
1、對係數矩陣a進行初等行變換,將其化為行階梯形矩陣;
2、若r(a)=r=n(未知量的個數),則原方程組僅有零解,即x=0,求解結束;
若r(a)=r3、繼續將係數矩陣a化為行最簡形矩陣,並寫出同解方程組;
4、選取合適的自由未知量,並取相應的基本向量組,代入同解方程組,得到原方程組的基礎解系
3樓:不是苦瓜是什麼
線性方程組
的解集合的極大線性無關組就是這個方程組的基礎解系。先求解方程組 解出所有解向量,然後求出其極大線性無關組就好。
一般求基礎解系先把係數矩陣進行初等變換成下三角矩陣,然後得出秩,確定自由變數,得到基礎解系,基礎解系是相對於齊次(等號右邊為0)的.
例如:x1+x2+x3+7x4=2,x1+2x2+x3+2x4=3,5x1+8x2+5x3+20x4=13,2x1+5x2+2x3-x4=7,其增廣矩陣為
1 1 1 7 2
1 2 1 2 3
5 8 5 20 13
2 5 2 -1 7
通過初等變換為:
1 1 1 7 2
0 1 0 -5 1
0 0 0 0 0
0 0 0 0 0
秩為2,未知數個數為4,自由變數個數為4-2=2
設自由變數為x3、x4,取(x3,x4)=(1,0)和(0,1)代入方程組(取最終變換得到的比較簡單)可得:(x1,x2)=(-1,0)和(-12,5)
於是基礎解系的基:(-1,0,1,0)t和(-12,5,0,1)t.
線性代數通解和基礎解系的區別如下:
1、定義不同,對於一個微分方程而言,其解往往不止一個,而是有一組,可以表示這一組中所有解的統一形式,稱為通解。基礎解系是線性無關的,簡單的理解就是能夠用它的線性組合表示出該方程組的任意一組解,是針對有無數多組解的方程而言的。
2、求法不同,基礎解系不是唯一的,因個人計算時對自由未知量的取法而異,但不同的基礎解系之間必定對應著某種線性關係。對於非齊次方程而言,任一個非齊次方程的特解加上一個齊次方程的通解,就可以得到非齊次方程的通解。
根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計算關係。
一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。
4樓:是嘛
齊次線性方程組的解集的極大線性無關組稱為該齊次線性方程組的基礎解系。基礎解系是線性無關的,簡單的理解就是能夠用它的線性組合表示出該方程組的任意一組解,是針對有無數多組解的方程而言的。基礎解系不是唯一的,因個人計算時對自由未知量的取法而異。
不同的基礎解系之間必定對應著某種線性關係。基礎解系是針對有無數多組解的方程而言,若是齊次線性方程組則應是有效方程的個數少於未知數的個數,若非齊次則應是係數矩陣的秩等於增廣矩陣的秩,且都小於未知數的個數。
擴充套件資料
基礎解系和通解的關係:對於一個方程組,有無窮多組的解來說,最基礎的,不用乘係數的那組方程的解,如(1,2,3)和(2,4,6)及(3,6,9)以及(4,8,12)等均符合方程的解,則係數k為1,2,3,4.....因此(1,2,3)就為方程組的基礎解系。
a是n階實對稱矩陣,假如r(a)=1。則它的特徵值為t1=a11+a22+...+ann,t2=t3=...
tn=0;對應於t1的特徵向量為b1,t2~tn的分別為b2~bn。此時,ax=0的解就是k2b2+k3b3+...+knbn;其中ki不全為零。
由於ax=0ax=0*b,b為a的特徵向量,對應一個特徵值的特徵向量寫成通解的形式是乘上ki並加到一起。這是基礎解系和通解的關係。
5樓:末你要
基礎解系是 (9, 1, -1)^t或 (1, 0, 4)^t。
解:方程組 同解變形為4x1-x2-x3 = 0
即 x3 = 4x1-x2
取 x1 = 0, x2 = 1, 得基礎解系 (9, 1, -1)^t
取 x1 = 1, x2 = 0, 得基礎解系 (1, 0, 4)^t
求「基礎解系」,需要將帶求矩陣變為「階梯形矩陣」(變換方法為「初等行變換」)。
基礎解系是ax = 0的n-r(a)個線性無關的解向量, 方程組的任一解都可表示為基礎解系的線性組合。
6樓:匿名使用者
基礎解系針對齊次線性方程組ax = 0而言的.
當r(a)時, 方程組存在基礎解系.
基礎解系是ax = 0的n-r(a)個線性無關的解向量, 方程組的任一解都可表示為基礎解系的線性組合.
具體求法按下圖例子 超了!
7樓:匿名使用者
基礎解系是ax=0的所有解的極大無關組。也是ax=0解空間的基。基礎解系不唯一,基礎解系中向量的個數等於未知數個數減去a的秩。要注意只有ax=0才有基礎解系而ax=b不存在基礎解系
8樓:孤舟獨泛
所謂基礎解系,就是ax=0的解向量組的一個極大無關組。
齊次方程組ax=0恆有解(必有零解)非零解時,根據齊次方程組解的性質,解向量的任意線性組合仍是該齊次方程組的解。設η1,η2,…,ηt是ax=0的基礎解系,即(1)它們是都是ax=0的解(2)它們線性無關(3)ax=0的任一解都可有它們線性表出。
基礎解系怎麼理解?大一線性代數
9樓:匿名使用者
基礎解系就是齊次線性方程組非零解的各未知分量之間的比例關係。
例如基礎解系是 (a, b, c, d) 表示 x1:x2:x3:x4 = a:b:c:d
10樓:**的拖鞋
我的理解是這樣的
我們求基礎解系的時候會把矩陣進行行變換轉化成最簡,其中的約束變數其實就是一個極大無關組,而極大無關組之間是不能相互表示的。
此時,你用0,1替換掉自由變數,或者直接列出方程求寫出自由變數與約束變數的關係,其本質都是用自由變數表示約束變數,那麼又回到1,極大無關組之間是不能相互表示的,那麼通過自由變數即可以表示向量組中所有的向量,那麼是不是就是基礎解繫了
求解大學線性代數題謝謝,大學數學線性代數題目求過程及答案,謝謝,看圖
不可能算出bai4次多項式。1 dudet zhie a x 0 x x 0 x 3 x 2 x x 0故三個特徵dao值0,x,x 對應的內特徵向量我就不求了,設為p1,p2,p3 2 記容p p1,p2,p3 b 0 0 0 0 x 0 0 0 x 那麼b p 1 ap,故a pbp 1 故a ...
線性代數和概率統計自學難度大嗎,高等數學的線性代數和概率論與數理統計難度大嗎
以前上這兩門從沒聽過課的我感覺還行,主要看你以前的鋪墊,很多東西都只是換了個 原理卻是以前就學過的,理解起來不難。高等數學的線性代數和 概率論與數理統計難度大嗎 各人感覺不一樣吧。我感覺線性代數和概率論要比微積分簡單多了。微積分專 裡面有導數,定積分,不屬定積分,級數,多重積分,微分方程 常微分,偏...
線性代數和數學分析有什麼關係,高等數學和數學分析有什麼區別啊
線性代數和數學分析都是數學學科的分支,可以說線性代數是數學分析的工具 精銳周浦 高等數學和數學分析有什麼區別啊 補充 具體課程設定要看各個系的安排,也許你們系對數學要求高,也許到時候書上很多東西都不講,我們就是,看上去課本挺難的,最後難的地方都跳過去了。呵呵 數學分析是近代數學的三大分支之一 代數 ...